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Introduction

This is the set of assignments for various AFP courses. From it are taken subsets which
have to be made and submitted throughout the AFP course, or individual lab exercises
can be done to train yourself in a particular topic. Beginners can start with Section 1.
Smaller exercises in Section 2 are roughly categorized and partitioned by their main
topic, but there is overlap in this categorization. Larger programming assignments
have their place in Sections 3-6, these may touch upon multiple topics. Also, there is
no ordering in the complexity or difficulty of each exercise, some exercises or sections
carry a rough indication of its difficulty: (*) for beginner, (∗∗) for intermediate, and
(***) for advanced. On the various (AFP) courses websites you can find which of these
exercises have to (or can) be made when, and, if required, how submission is done.
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1 Beginners exercises

1.1 Beginners training, brief (*)

In this exercise we will guide you through the basics of writing, compiling
and running a Haskell program. Some basic familiarity with using a com-
puter and the command line is assumed.

1.1.1 Hello, world!

Use your favourite editor to create a source file containing the following program:

module Main where

main == putStrLn "Hello, world!"

You can give the file any name ending in .hs, such as HelloWorld.hs, but for the rest
of the exercise we will assume that you named the file Main.hs.1

You can compile your program by invoking the following command from the command
line:2

ghc --make Main.hs

This command will compile both the Main module, as well as any other modules it
depends on.

Running your program will give the output:

Hello, world!

1Note that, like in Java and C], it is always a good idea to make sure the name of your file and the name of
your module are identical, otherwise the compiler will complain when you try to import this module
from another one. In Haskell the Main module—the one containing your main function, the function
that will be invoked when you execute your compiled program—is a bit of an exceptional case in this
respect, in that the module name must always be Main, but so long as you do not try import it from
another module—which you generally won’t—you can give it another file name. If there is no good
reason to do so, however, you probably shouldn’t and just name your program Main.hs.

2On the university computers you must open a command line using Start > Standard Applications >
Computing Sciences > Haskell > Cabal!
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1 Beginners exercises

Apart from compiling and then running a program, we can also run the program inter-
actively from an interpreter:

ghci Main

You will now be presented with the prompt

*Main>

Type in main and press enter to start the program, again resulting in the output:

Hello, world!

Using the interpreter is more convenient when you are developing your program, as
you can invoke any function defined in your program and pass it any arguments you
desire. When you compile your program it will always be the function main that gets
called.

1.1.2 Interaction with the outside world

Shouting a message to the outside world without bothering to listen to its response is
somewhat boring. What we are really interested in is interaction with the outside world.

This can be achieved using the interact function from Haskell’s standard library (also
called the Prelude). The function interact is an IO action3 that takes another function
as its argument. This concept—passing a function as an argument to another function—
may be unfamiliar if you have only programmed in imperative programming languages,
such Java or C], before, but is one of the cornerstones of the functional programming
paradigm, as is reflected in its name. The function interact is thus an example of a so-
called higher-order function and we shall become intimately familiar with them during
this course.

But what does the function interact do? First, it reads a string from the standard in-
put—by default your keyboard, but below we shall see how we can redirect the stan-
dard input to read from a file instead. Next, it applies the function you passed as an
argument to interact to the string it just read from the standard input, to transform it
into another string. Finally, it prints the transformed string to the standard output—by
default your screen, but below we shall see how we can redirect the standard output to
write to a file instead.

Note that this does put some restrictions on the kinds of functions you can pass to
interact: they should take exactly one string as their argument, and also return a

3IO stands for “input/output.”
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1.1 Beginners training, brief (*)

string as their result. Formally, we write that the argument of interact should be of
the type String -> String.

Time for an example:

module Main where

main == interact reverse

Additionally, create a file called in.txt, containing the text:

eb ot

eb ot ton ro

noitseuq eht si taht

Compile the program (running it from the interpreter is not going to work correctly!),
and run it, while redirecting the standard input to read from the file in.txt. On Win-
dows machines this can be achieved using the command:

Main < in.txt

On Mac and Linux machines you need to use the command:

./Main < in.txt

This will give the output:

that is the question

or not to be

to be

Almost, but not quite right. We reversed the complete file, instead of reversing the lines
one at a time. Let us try again:

module Main where

main == interact (unlines . map reverse . lines)

Note that we will often try very hard to make out programs look very pretty on paper
(including in the exercises, the lecture notes, and on exams) by replacing some of the
operators used in the source code by their correct mathematical symbols. The actual
text that you need to enter in your source file would be:

module Main where

main = interact (unlines . map reverse . lines)

11



1 Beginners exercises

This program makes use of the function composition operator . to glue three functions
together before they are passed to interact. Note that, just like in mathematics, com-
posed functions should be read from right-to-left.

The first function, lines, will split a string into a list of strings (denoted [String]). Its
type is thus String -> [String].

The second function, map reverse, will reverse all of the strings contained inside a
list. Its type is thus [String] -> [String]. Note that this function is actually an-
other instance of a higher-order function (in this case map) applied to a second function
(reverse).

The third function, unlines, takes a list of strings and concatenates them together with
a newline character in between.

In this instance it may be more apparent what the program does if we could compose
functions from left-to-right. We can do so as follows:

module Main where

import Control.Arrow

main == interact (lines >>> map reverse >>> unlines)

Running either of the two programs will give us the desired output:

to be

or not to be

that is the question

If you want to save the results to a file instead of printing it on the screen, you can
instead invoke the program with the command:

Main < in.txt > out.txt

1.1.3 The exercise

Modify the program given above to have it—instead of printing each line of the input
on a separate line—print the lines with slashes in between. Thus for the input:

eb ot

eb ot ton ro

noitseuq eht si taht

the program should give as output:

12



1.2 Beginners training, extensive (*)

to be / or not to be / that is the question

Hint: you can use the function intercalate from the library Data.List (which you
will have to import). See http://hackage.haskell.org/packages/archive/base/

latest/doc/html/Data-List.html#v:intercalate.

1.2 Beginners training, extensive (*)

This introduction takes you slowly through your first steps with Haskell. Most of the
exercises are easy, some may even sound too easy, but try them nevertheless. They’re
intended to give you more familiarity with the interpreter, and also to let you encounter
typical error situations in a harmless situation, so that you can learn to deal with them.

Some other exercises are harder. If you have problems solving a particular exercise
within 5 to 10 minutes, remember the number of the exercise and go on. Later, go back
and try again. If you still fail, ask someone.

A few exercises are marked explicitly as being difficult. It is not necessary to solve them
on a first pass, and they may take longer than 5 to 10 minutes. They are included as a
challenge.

Exercise 1.2.1 (medium). [Only if you are using your own machine – on the lab ma-
chines, GHC is already installed for you.] Install GHC, including the interpreter GHCi.
For more information on how to do that, google for

Haskell Platform

Install the latest version of the platform that is available for your OS. If you want to test
that everything works as expected, you can do “Haskell in 5 Steps”:

http://haskell.org/haskellwiki/Haskell_in_5_steps

Exercise 1.2.2. Start up GHCi. Depending on your environment, this can either be done
by choosing GHCi from a menu, by clicking on an icon, or by opening a command line
and at the command line prompt $, typing

$ ghci

You’re confronted with a welcome message and finally, the GHCi prompt, which will
usually say Prelude>, but we’ll abbreviate it here simply to >.

1.2.1 Getting started with GHCi

Exercise 1.2.3. Type

13
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1 Beginners exercises

> :?

to get help. This lists all the commands available in the interpreter (i.e., in GHCi). Com-
mands all start with a colon :. Commands are not Haskell code, they just tell the inter-
preter what to do. As you can see, there are a lot of commands, but we’ll only need a
few of them.

Exercise 1.2.4. Type

> :q

(or :quit) to leave the interpreter again. This is a useful command to know if you ever
get (temporarily) tired of practicing Haskell.

Exercise 1.2.5. Start GHCi again.

$ ghci

1.2.2 Basic arithmetic

Exercise 1.2.6. Type

> 2

Generally, you can type expressions at the prompt. The expressions are evaluated, and
the final value is printed.

Exercise 1.2.7. Type

> 2 + 2

There are binary operators in Haskell that are written in usual infix notation.

Exercise 1.2.8. Type

> (+) 2 2

All binary operators can also be written in prefix notation. The operator is then sur-
rounded by parentheses. Arguments are just separated by spaces, no parentheses or
commas.

Exercise 1.2.9. A special feature of the GHCi interpreter is that the last evaluated value
is always available for further computation under the name it:

> it

Also try:

> it + 2

> it + 3

> it + it
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1.2 Beginners training, extensive (*)

Exercise 1.2.10. Operators have their standard priorities. In particular, (*) binds stronger
than (+) or (-). Type

> 6 * 11 - 2

Exercise 1.2.11. Parentheses can be used to direct the computation. Type

> 6 * (11 - 2)

and compare the result with the result from Exercise 1.2.10.

Exercise 1.2.12. Try

> (-) ((*) 6 11) 2

> (*) 6 ((-) 11 2)

The same as the two expressions before, but in prefix notation – just to show that it is
possible.

Exercise 1.2.13. Type

> 6 * (11 - 2

If you forget parentheses or other make syntactic mistakes, you’ll often get a parse error.
This indicates that your expression isn’t legal Haskell. You can press the “up arrow”
key on your keyboard to get back the expression you typed, correct it, and try again.

Exercise 1.2.14. Try

> True

> "Hello"

Not only numbers can be evaluated. Haskell has several types, for instance Boolean
values and strings.

1.2.3 Booleans

Exercise 1.2.15. Type

> True || False

There are special operators on Boolean values. The (||) operator is the logical “or”. It
returns true if at least one of the arguments is true.
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1 Beginners exercises

Exercise 1.2.16. Try

> not True

> not False

Here, not is a (predefined) function that negates a Boolean value. The argument of not
is just separated with a space, no parentheses are necessary. Although

> not (True)

would work, this syntax is not typically used by Haskell programmers.

Exercise 1.2.17. Of course, the logical ”and” exists as well. Try

True && True

False && True

(not False || True) && (False || True)

What’s the answer?

Exercise 1.2.18. Type

> true

Haskell is case-sensitive, i.e., it matters if you use lower- or upper-case characters. In
Haskell, identifiers that start with a lower-case letter are abbreviations for expressions
(i.e., predefined functions such as not), whereas identifiers that start with an upper-case
letter are somewhat special – so-called data constructors, such as True and False.

If you type an identifier that hasn’t been defined yet, you’ll get an error message saying
that the identifier is “not in scope.” Scope refers to the area of a program where an
identifier is known, so “not in scope” indicates that the identifier is unknown at this
point.

Exercise 1.2.19. Try

> True || True && False

> not True && False

What does this tell you about the priorities of the operators (||) and (&&)? Also, what
does it tell you about the priority of function application? How would you have to
place parentheses in each of the two examples to get the opposite result?

1.2.4 Strings

Exercise 1.2.20. For strings, there are also operators. For instance, (++) concatenates
two strings – try:

> "Hello" ++ " " ++ "world"
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1.2 Beginners training, extensive (*)

Exercise 1.2.21. The function length computes the length of a string – try:

> length "Hello"

> length "world"

> length ""

Exercise 1.2.22. Try also:

> head "Hello"

> tail "Hello"

> last "Hello"

> init "Hello"

> reverse "Hello"

> null "Hello"

What do these functions do? Gain confidence in your assumptions by trying more
examples.

Exercise 1.2.23. If you type

> head ""

you get an exception. As you probably have discovered in Exercise 1.2.22, head tries to
determine the first element of a string. On an empty string, it fails! Exceptions are dif-
ferent from all the errors you have seen so far, because they occur while the program is
executed. In contrast, parse errors (Exercise 1.2.13) and scoping errors (Exercise 1.2.18)
occur before the program is executed. We also say that exceptions are dynamic errors,
whereas the others are static errors.

Exercise 1.2.24. Which other of the functions in Exercise 1.2.22 cause an exception when
called on the empty string?

Exercise 1.2.25. Type

> "Hello

If you forget quotes around a string and in a few other situations, you’ll get a “lexi-
cal error”. Again, this indicates that you haven’t provided a legal Haskell expression,
and given the distinction made in Exercise 1.2.23, it is a static error. Lexical errors are
much like a parse error, but at an even more fundamental level. In the ”Grammars and
Parsing” part of the course, you’ll learn the difference between parse errors and lexical
errors. You’ll see that it is mainly a difference relevant for the implementation of the
interpreter/compiler, and not so important for the programmer.

Exercise 1.2.26 (medium, recommended). Type

> not "Hello"
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If you try to use logical negation on a string, you get yet another sort of error. This
is – once you get used to programming in Haskell – the most frequent kind of error
you’ll be confronted with: a type error. Type errors usually indicate that something
is semantically wrong with your program. Type errors come in many flavours, and
require a lot of practice to read and understand. Therefore it is actually good to make
type errors, because it gives you practice understanding them!

Here, you’ll get the following message:

Couldn’t match expected type ‘Bool’ against inferred type ‘[Char]’

In the first argument of ‘not’, namely ‘"Hello"’

In the expression: not "Hello"

In the definition of ‘it’: it = not "Hello"

The first line tells you what went wrong, the other lines tell you more about where it
went wrong.

The first line says that a Bool was expected where a [Char] was given. Now, as we’ll
see soon, [Char] just means a string. So, a Boolean was expected where a string was
given. This makes sense: logical negation via not expects as its argument a Boolean
value, but we’ve passed "Hello", which is a string. Indeed, this is what the second
line says: the argument of not, namely "Hello" is blamed. The other lines give more
information about the context and are not so important (note, however that the last
line mentions it, the identifier that’s always implicitly bound to the last result in the
interpreter, see Exercise 1.2.9).

1.2.5 Types

Exercise 1.2.27. Every Haskell expression has a type, and there is an interpreter com-
mand to ask for that type.

> :t True

True :: Bool

The symbol :: reads “has the type”, so the answer is that True has the type Bool of
Boolean values.

Exercise 1.2.28. Let’s try a string next:

> :t "Hello"

"Hello" :: [Char]

This time, the answer is that "Hello" has the type [Char]. This in turn stands for a “list
with elements of type Char,” where Char is the type of single characters. So in Haskell,
strings are just lists of single characters, and the notation "Hello" is actually just an
abbreviation for a notation that makes the list-like character much more obvious – try:
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> [’H’, ’e’, ’l’, ’l’, ’o’]

> :t [’H’, ’e’, ’l’, ’l’, ’o’]

> ’H’

> :t ’H’

Single characters are written in single quotes, strings are lists of characters, but can be
written shorter between double quotes.

Exercise 1.2.29. Recall function head from Exercise 1.2.22. Try again

> head "Hello"

Does it result in a string or in a single character? Verify your result using

> :t head "Hello"

Note that you can apply :t to arbitrary expressions, not just values. How about the
expression tail "Hello" – does it return a string or a single character?

Exercise 1.2.30. Functions (and operators) also have types:

> :t not

not :: Bool -> Bool

The type Bool -> Bool is the type of functions that expect a Bool as parameter and
deliver a Bool as result. Now look again at Exercise 1.2.26 with the type error. There,
we tried

not "Hello"

The function not expects a Bool, and "Hello" is a [Char], hence the error.

1.2.6 Lists

Exercise 1.2.31 (medium). Let’s try one of our string functions next:

> :t length

length :: [a] -> Int

The result is somewhat surprising. The function returns an integer (i.e., an Int), ok. But
it doesn’t take a string, i.e., a [Char], but instead a [a]? What does the a mean?

It means that we don’t care! The a is a type variable. A type variable is a bit like a joker
– we can choose any type to take a’s place! So length computes the length of any list –
not just lists of characters, but also lists of numbers, or even lists of lists. Try to guess
the answers before trying the expressions in the interpreter:
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> length [1, 2, 3]

> length [[1, 2], [1, 2, 3], [], [99]]

> length ["Hello", "world"]

If we compute the length of a list of lists, the length of the inner lists is irrelevant.

Types like the type of length, which contain type variables, are called polymorphic, be-
cause it is like they have many different types at once.

Exercise 1.2.32. We can be even more adventurous. In Haskell, functions are just values
like anything else. So, we can put functions into lists!

> length [length, head]

Here we have a list of two functions.

Exercise 1.2.33. Recall function head from Exercise 1.2.22, 1.2.29 and 1.2.32. Try to guess
what the type of head is. Verify it in the interpreter.

Exercise 1.2.34. Guess and check the types of tail, reverse and null.

Exercise 1.2.35. Guess and check the type of [True, False, False].

Exercise 1.2.36. All elements of a list must be of the same type! Let’s try what happens
if this is not the case:

> [True, "Hello"]

A type error again! And very similar to the one before:

Couldn’t match expected type ‘Bool’ against inferred type ‘[Char]’

Expected type: Bool

Inferred type: [Char]

In the expression: "Hello"

In the expression: [True, "Hello"]

Again, we have provided a string where a Boolean value was expected. Again, "Hello"
is blamed. This time, the first element of the list was a Bool (namely True), so the type
checker inferred that we’re writing a list of Booleans.

Exercise 1.2.37. Guess what the type of the empty list is! Think about this for at least a
minute! Only then try it in the interpreter.

Exercise 1.2.38. Let us produce another type error.

> [[False], True]

Here, we get:

20



1.2 Beginners training, extensive (*)

Couldn’t match expected type ‘[Bool]’ against inferred type ‘Bool’

In the expression: True

In the expression: [[False], True]

In the definition of ‘it’: it = [[False], True]

Because the first element is of type [Bool], and the second of type Bool.

Exercise 1.2.39 (difficult). The alert reader might have discovered an apparent incon-
sistency in what we’ve discussed so far. I said: the elements of lists all have to be of the
same type. We have seen in the previous exercises that length and head are of different
types. Try again:

> :t length

> :t head

But we have successfully computed

> length [length, head]

in Exercise 1.2.32. Can you guess why?

Try the following:

> :t []

> :t [length]

> :t [head]

> :t [length, head]

Can you explain these types?

Exercise 1.2.40. Try to guess what

> (head [length]) "Hello"

does, and then verify your guess in the interpreter. Recall that functions are just or-
dinary values in Haskell! They can be passed around, put into data structures such
as lists, and be arguments and results of other functions. Even though it might seem
unusual, don’t let it confuse you.

Exercise 1.2.41 (difficult). Try to guess what

> (head [length, head]) "Hello"

does, and then verify your guess in the interpreter. Try to explain! What does this say
about Haskell’s type system?
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1.2.7 Tuples

Exercise 1.2.42. Every element in a list has the same type, but lists can contain arbi-
trarily many elements. Haskell also provides tuples. Tuples have a fixed length, but
elements of different types can be combined. Try the following expressions:

> (1, 2)

> (1, "Hello")

> (True, id, [1, 2])

> (1, 2, 3)

> (1, (2, 3))

> ((1, 2), 3)

> [1, 2, 3]

Exercise 1.2.43. Ask for the types of the expressions from Exercise 1.2.42. Note how the
tuple types reflect each of the types of the components. Note also that the four final
expressions all have different types.

Exercise 1.2.44. Pairs are used quite often. Tuples with more components are less fre-
quently. For pairs, there are projection functions. Try:

> fst (1, "Hello")

> snd (1, "Hello")

> fst (1, 2, 3)

> :t fst

> :t snd

> fst (snd (1, (2, 3)))

Try to understand the type error and the types.

1.2.8 Currying

Exercise 1.2.45. As indicated before, operators have types, too.

> :t (++)

In Exercise 1.2.8, I have explained that operators, if written between parentheses, can
be used in prefix notation. In fact, if between parentheses, they’re treated just like
ordinary function names. Therefore, we can also ask for the type of an operator if
using parentheses. The answer is

(++) :: [a] -> [a] -> [a]

Since (++) is a binary operator, it takes two arguments. Functions with multiple argu-
ments are usually written in so-called curried style – after Haskell B. Curry, one of the
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first persons to use this style and also the person after whom the language Haskell was
named. There is no magic here. Intuitively, it means that the function gets its argu-
ments one by one, rather than all at the same time. It gets a list, then another list, and
then produces yet another list as its result. This sequentiality is reflected in the (prefix)
syntax of function application:

> (++) [1, 2, 3] [4, 5]

> (++) "don’t " "panic"

The parameters are just separated by spaces, there are no parentheses or commas to
group the parameters together.

Concatenation is polymorphic again. It concatenates two lists of the same element type
(the same variable is used everywhere), and the result list also has that element type.

Exercise 1.2.46. Verify that concatenating two lists of different element type results in a
type error. Try to understand the resulting type error message.

Exercise 1.2.47. Here are some more functions with two arguments – all of them have
types in the curried style. Check their types and try to find out what they are doing by
passing them type-correct parameters. Also try to pass type-incorrect parameters and
try to understand the error messages – for instance, try:

> :t take

> take 5 "Hello world!"

> take 42 "Hello world!"

> take 0 "Hello world!"

> take (-3) "Hello world!"

> take True "Hello world!"

> take 7 ’H’

Perform similar tests for the following functions:

drop

replicate

const

What’s the difference between replicate 7 ’x’ and replicate 7 "x"? Did you
succeed passing type-incorrect parameters to const?

Exercise 1.2.48. In the interpreter, it is possible to abbreviate expressions by giving them
a name. The syntax for this is

let identifier == expression

The whole thing is called a statement and – provided that expression is type-correct,
introduces identifier for further use. Try
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> let hw == "Hello world!"

> :t hw

> hw

> length hw

Exercise 1.2.49. Define an abbreviation of your own.

Exercise 1.2.50. Recall Exercise 1.2.45, where we have introduced functions (or opera-
tors) with multiple arguments. I said that currying means that function parameters are
passed one-by-one. This also means that not all parameters have to be provided at the
same time. We can partially apply curried functions with multiple parameters:

> :t take

> :t take 2

> :t take 2 "Rambaldi"

> take 2 "Rambaldi"

> :t (++)

> :t (++) "Ramb"

> :t (++) "Ramb" "aldi"

> (++) "Ramb" " aldi"

> :t replicate

> :t replicate 3

> :t replicate 3 1

> :t replicate 3 ’c’

> :t replicate 3 False

> replicate 3 False

Exercise 1.2.51. We can abbreviate useful partial applications and give them a name,
for instance:

> let dup == replicate 2

> :t dup

> dup ’X’

> dup 0

> dup True

> dup ’ ’

> let indent == (++) (dup ’ ’)

> indent "Hello world!"

> :t indent

Exercise 1.2.52. Try the following expressions:

> take 3 "Hello"

> take False "Hello"
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> take "x" "Hello"

> take 2.5 "Hello"

The first should succeed, the others fail. Try to explain why the others fail. Try to
understand the error messages of the second and third case. The error message for the
fourth expression is strange, and we’ll explore this further.

1.2.9 Overloading

Exercise 1.2.53 (medium, recommended). Ask for the type of 2.5:

> :t 2.5

2.5 :: (Fractional t) => t

This might come as a surprise. You might have expected to read Float here, for floating
point number, or Double, for a double-precision number. Instead, the type contains a
variable t, which suggests it’s polymorphic, like many of the functions we’ve seen so
far. But in addition, there’s a so-called constraint in this type – the part before the double
arrow =>. The way to read this type is as a logical implication: for all types t, if t is
Fractional, then 2.5 has the type t. So, it’s a bit like a polymorphic type, but with
an additional condition on the type variable – we can’t choose an arbitrary type, but
instead must choose a Fractional type. Types that have such constraints are called
overloaded.

Exercise 1.2.54. What does Fractional mean? The identifier Fractional refers to a
type class, that’s a collection of types that share certain properties. You can ask the
interpreter GHCi to give you more information about a type class and the types that
belong to that type class:

> :i Fractional

The command :i (or :info) can be used with any identifier and results in information
about where and how that identifier is defined. If used on a type class, you get to see
the definition of the class, and information about which types belong to that class. In
this case, you should see:

class (Num a) => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

-- Defined in GHC.Real

instance Fractional Double -- Defined in GHC.Float

instance Fractional Float -- Defined in GHC.Float

The first lines are the class declaration, which tells us something about the functionality
that types of this class are required to support. But for now, we are more interested in
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the members of the class, which are called instances. In this case, the class consists
of two types: Double and Float, double- and single-precision floating point numbers,
respectively.

1.2.10 Numeric types and their classes

Exercise 1.2.55. Recall

> :t 2.5

With what we’ve learned now, the type tells us that 2.5 can be a Double or a Float,
depending on context, but not, for instance, an Int! Why not? Because Int is not an
instance of the class Fractional! And this explains the strange type error message you
get when trying

> take 2.5 "Hello"

The function take expects an Int, but is given something of type (Fractional t) => t,
i.e., something that could be anything in the class Fractional. Now, Int is not in
Fractional, hence the error.

Exercise 1.2.56. Type classes are ubiquitous in Haskell, and there are many type classes
predefined. If you check the type of numberic literals without a decimal dot, you’ll get
a different constraint:

> :t 2

The class Num is larger than Fractional, and comprises all numeric types, not just Float
and Double, but also Int and Integer. Both are types for integers, but Int is bounded
(but at least 32-bit large), while Integer can can compute with arbitrarily large integers
(but is slightly less efficient). Type

> :i Num

to get information about the instances of Num.

Exercise 1.2.57. Now, we can also look at the types of the numeric operators:

> :t (+)

> :t (*)

> :t (-)

> :t (/)

You see that all of them are overloaded. While the first three work for all numeric types,
the division operator only works for fractional types.
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Exercise 1.2.58. The fact that numbers you type in, such as 2, are overloaded over all
numeric types (including the fractional types), means that you can use division on such
numbers:

> 1 / 2

> 3 / 8

> :t 3 / 8

The result of such a division can still be used as a Float or a Double, but no longer as
an Int. This also holds for divisions that happen to produce a whole number:

> 4 / 2

> :t 4 / 2

So,

> take (4 / 2) "Hello"

should produce a type error again. Verify that.

Exercise 1.2.59. The types Float and Double are related (their only difference is their
precision in positions after the decimal dot), so it makes sense that operations usually
don’t work on only Float or only Double, but instead are overloaded, with a constraint
on Fractional.

Similarly, Int and Integer are related (their only difference is that Int is bounded and
Integer isn’t), and many operations work on both. So there’s a class for these two types
as well: Integral. Type

> :i Integral

and verify that Integer and Int are instances of Integral. The type class Num contains
both the two integral types in Integral and the two fractional types in Fractional.

Exercise 1.2.60. An operation on the integral types is integer division, called div:

> :t div

> div 4 2

> :t div 4 2

> div 7 2

> div 11 3

In integer division, the result is always rounded down to the nearest integer.

Exercise 1.2.61. The counterpart to integer division is mod, which computes the remain-
der of integer division:

> :t mod

> mod 7 2

> :t mod 7 2

> mod 11 3
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Exercise 1.2.62. Recall that infix operators can be used as prefix functions by surround-
ing them with parentheses. Similarly, normal functions can be used as infix operators
by surrounding them with backquotes. For some Haskell functions, such as div and
mod, this is common practice:

> 11 ‘div‘ 3

> 11 ‘mod‘ 3

1.2.11 Printing values

Exercise 1.2.63. Another type class is revealed by looking at the function show:

> :t show

(Show a) => a -> String

For all types a in Show, a value can be turned into a string. It turns out that many, many
types are in Show. If you try

> :i show

you probably have to scroll up to be able to see all the instances in that class. Try it out
with the types you already know, for instance:

> show 2

> show 2.5

> show True

> show ’a’

> show "Hello"

> show [1, 2, 3]

Exercise 1.2.64. GHCi uses a variant of show, called print, internally when printing
the results of expressions you type! If a type is not an instance of type Show, then GHCi
doesn’t know how to print a result.

Some types are not in Show, for example functions! If you try to evaluate a function,
you get a type error:

> take

This results in:

No instance for (Show (Int -> [a] -> [a]))

arising from use of ‘print’ at <interactive>:1:0-3

Possible fix:

add an instance declaration for (Show (Int -> [a] -> [a]))

In the expression: print it

In a ’do’ expression: print it
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The interesting part is the first line. There is no Show instance for the type Int -> [a] ->

[a] – the type of take. In other words, GHCi doesn’t know how to print a function on
screen.

It is important to note that take itself is type correct, as

> :t take

demonstrates. The type error here only stems from the fact that GHCi tries to print
the result of an expression you type in and implicitly computes print it (see Exer-
cise 1.2.9) after evaluating the expression. That’s why print is mentioned in the error
message, even though you haven’t typed it in.

1.2.12 Equality

Exercise 1.2.65. Yet another interesting class is the class Eq of types supporting an equal-
ity operation:

> :t (==)

> :i Eq

The equality operator consists of two ==-characters. Again, there are very many types
supporting equality. The result is always a Boolean value:

> 1 == 1

> 1 == 1.5

> True == False

> ’x’ == ’X’

> ’X’ == ’X’

> [1, 2] == [2, 1]

> [1, 2] == [1, 2]

> "Hello" == "world"

Exercise 1.2.66. Try to guess the result of

> True == (True == True)

and verify it in the interpreter. Can you explain what’s happening?

Exercise 1.2.67. Function types are an example of types not supporting equality. The
expression

> (++) == (++)

does not return True, but results in a type error explaining that the type of the concate-
nation operator [a] -> [a] -> [a] is not an instance of the Eq class.
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Exercise 1.2.68. Find out the types of the following functions, and find out what they
do by applying them to several arguments:

odd

even

gcd

sum

product

Exercise 1.2.69. The function elem checks whether a list contains a specific element.
Check the type:

> :t elem

The function elem is often written infix as ‘elem‘. Try to guess the answers before veri-
fying them with the interpreter:

> 7 ‘elem‘ [2, 3, 5, 7, 11]
> ’e’ ‘elem‘ "Hello"
> [] ‘elem‘ []
> [] ‘elem‘ [[]]
> [] ‘elem‘ [2, 3, 5, 7, 11]

Can you explain the type error?

1.2.13 Enumeration

Exercise 1.2.70. Type

> [1 . . 5]

and see what happens. Also try the following expressions

> [1, 3 . . 10]
> [10, 9 . . 1]
> [’a’ . . ’d’]

Recall that strings are just lists of characters.

Exercise 1.2.71. Type

> [1 . .]

This will start printing all natural numbers starting with 1. You will have to interrupt
execution using Ctrl+C, i.e., by pressing the Ctrl key, holding it, then pressing C. You
can do this whenever you want to interrupt GHCi, whether it is because the computa-
tion would not terminate or is just taking too long for your taste.
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Exercise 1.2.72. As exercise 1.2.70 shows, ranges can be specified for several types. The
types that allow this are in yet another type class called Enum. Type

:i Enum

You will see that there are several methods in class Enum, among them enumFromTo,
enumFromThenTo and enumFrom.

The range notation using . . is so-called syntactic sugar for these functions. Haskell sim-
plifies range expressions to applications of these functions. Verify that

enumFromTo 1 5

enumFromThenTo 1 3 10

enumFromThenTo 10 9 1

enumFrom 1

produce the same results as the range expressions above.

1.2.14 Defining new functions

Exercise 1.2.73. Let’s define a new function:

> let inc x == 1 + x

This is like defining an abbreviation, but additionally, we introduce a parameter x that
we can use on the right hand side. This function increases a numeric value by 1:

> :t inc

The compiler infers the best possible type (including the Num constraint) for our function
– you don’t have to provide type information explicitly. The new function is the same
as the function defined via partial application of (+):

> let inc’ == (+) 1

> :t inc’

> inc 41

> inc’ it

Exercise 1.2.74. Here is a function we couldn’t have defined via partial application:

> let parens s == "(" ++ s ++ ")"

It surrounds a given string s with parentheses. Try it on a couple of strings. Also try it
on the empty string.
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Exercise 1.2.75. See how

> init (tail "Hello")

drops the first an the last element of a string. Define a function prune that drops the
first and the last element of any string. Check the type of your function:

> :t prune

It should be [a] -> [a]. Apply it to a list of numbers and see if it works as well. What
happens if you apply it to a list of less than two elements? What happens if you apply
it to a list of exactly two elements?

Exercise 1.2.76. Here’s a function ralign with two arguments:

> let ralign n s == replicate (n - length s) ’ ’ ++ s

Guess its type and what it does. Then verify in the interpreter. What does happen if n
is smaller than the length of s?

Note that several parameters appear on the left hand side in a similar style as the func-
tion application would look: all arguments are separated by spaces, there are no paren-
theses or commas. The type of the function is in curried style (see Exercise 1.2.45), so it
can be partially applied:

> let myralign == ralign 50

Test myralign on a couple of strings. What can you say about length (ralign n s)

for arbitrary values of n and s?

Exercise 1.2.77. Can you write a function lalign that moves a string to the left rather
than to the right?

Exercise 1.2.78 (medium). Can you write a function calign that (approximately) cen-
ters a string rather than to move it to the left or right? Hint: You’ll probably have to per-
form integer division via mod (see Exercise 1.2.61). Make sure that length (calign n s)

is always n, and that the function works in all cases, whether n is even or odd, and
whether length s is even and odd.

1.2.15 Anonymous functions

Exercise 1.2.79. We have already seen that in Haskell, functions are just normal values.
This goes even further: in Haskell, functions do not require a name! Just like you
don’t have to give a name to every number or string you use, you also can write down
functions without giving them a name. Such functions are called anonymous functions.
A named function such as
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inc n == n + 1

can be written as

\n -> n + 1

The backslash \ and -> are just syntax: to introduce an anonymous function, and to
separate the parameters from the body of the function. The above is the function that
“maps n to n + 1”. The backslash \ is read as “lambda” (for mathematical/historical
reasons), so you can read the above function as “lambda n arrow n + 1”. If you want
to apply such an anonymous function, you have to put it in parentheses to delimit the
function body: try

> (\n -> n + 1) 10

Exercise 1.2.80 (medium). For the range expressions introduced in exercise 1.2.70, we
can use an anonymous function and the :t command to determine that ranges are
indeed a feature that is tied to the type class Enum. Check

> :t \x y -> [x . . y]

and try to understand the type.

Exercise 1.2.81. Every function can be written as an anonymous function. For instance,
if for some reason we wouldn’t want to give ralign a name, we could use it anony-
mously:

> (\n s -> replicate (n - length s) ’ ’ ++ s) 10 "Hello"

Exercise 1.2.82. On the other hand, of course, we can assign names to anonymous func-
tions:

> let dec == \n -> n - 1

This means exactly the same as if we had written

> let dec n == n - 1

In fact, the latter is automatically translated into the former by the compiler. The latter
syntax is provided as so-called syntactic sugar, i.e., a mechanism to make programming
a little more convenient.
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1.2.16 Higher-order functions

Exercise 1.2.83. By now, you may (rightfully) ask what the big use of anonymous func-
tions is at all, when all we might really want to do in the end is to assign a name to
them again.

The answer lies – again – in the fact that functions in Haskell are more versatile than in
many other languages. In particular, functions can be arguments to other functions. A
highly useful example of such a function is map:

> map dec [1, 2, 3]

[0, 1, 2]

As you can see, dec (from Exercise 1.2.82) is applied to every element of the list. That’s
what map does: it takes a function, and a list, and it applies the function to every element
in that list. It is very similar to an iterator in many other languages.

A function such as map that takes other functions as arguments, is called a higher-order
function.

Exercise 1.2.84. For a function such as map, it turns out to be incredibly useful that we
don’t have to assign a name to every argument function. Try the following examples:

> map (\s -> " " ++ s) ["Hello", "world"]

> map (\n -> n ‘mod‘ 2) [1, 2, 3, 4, 5, 6, 7]

> map (\n -> n * n) [1, 2, 3, 4, 5, 6, 7]

> map (take 2) ["Hello", "world"]

> map not [True, False, True]

> map (\s -> (reverse (take 2 (reverse s)))) ["Hello", "world"]

Think of more examples and try them out. Can you imagine what the type of map is? If
you have a guess, try

> :t map

Did you guess right? If yes, you can be really proud of yourself. If not, no problem, just
look at the examples again and try to understand the type.

Exercise 1.2.85. Another higher-order function is filter. It takes a test, that is a func-
tion producing a Boolean value and applies it to all elements of a list. It only keeps
the list elements for which the test evaluates to True. Here are a few examples (recall
Exercise 1.2.68):

> filter even [1, 2, 3, 4, 5, 6]

> filter (\x -> not (null x)) ["a", "list", "", "of", "strings", ""]

> filter (\x -> x >= 3) [1, 7, 3, 5, 4, 2]

> filter not [True, False, True]

> filter (\x -> x + 1) [1, 2, 3, 4, 5, 6]
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The operator (>=) just compares if a number is at least as large as the other. The last
example will produce a type error. This situation may arise in a real program if you
confuse map and filter, which are similar problems. Can you explain the type error?
Look at the type of filter and at the type of the anonymous function for help:

> :t filter

> :t \x -> x + 1

Exercise 1.2.86. What can you say about this function:

> let myfilter == filter (\x -> x True)

What is its type? How does it behave? Is it useful?

Exercise 1.2.87. Look at types of the following higher-order functions. Apply argu-
ments of the appropriate types to discover what these functions are doing:

dropWhile

takeWhile

all

any

Exercise 1.2.88. Another higher-order function – in fact, an operator – is function com-
position, written as a dot in Haskell:

> :t (.)

(:) :: (b -> c) -> (a -> b) -> a -> c

That’s a complicated type, so let’s rather look at the definition. In fact, we can define it
at the interpreter prompt ourselves (thereby shadowing the already existing definition):

> let (.) f g == \x -> f (g x)

This operator takes two functions f and g, and it results in the function that, given an
x, first applies g and then f to it. Try the following examples:

> (tail . tail) "Hello"

> map (head . tail . tail) ["Hello", "world"]

> ((\x -> x + 1) . (\x -> x * 3)) 42

Function composition can thus be used to sequence functions. The rightmost function
in the sequence is applied first.
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1.2.17 Operator sections

Exercise 1.2.89. The final expression in Exercise 1.2.88 can actually be written much
simpler. Try

> ((+1) . (*3)) 42

Similarly, try

> map (+1) [1 . . 5]

An operator can be partially applied to its first or second argument if placed in paren-
theses. This construct is called an operator section and is a convenient form of syntactic
sugar. In particular, (+1) is the same as writing \x -> x + 1.

Try also

> map (2^) [1 . . 5]
> map (^2) [1 . . 5]
> map (10-) [1 . . 5]
> map (-10) [1 . . 5]

and analyze the result. The final expression will cause a type error, because unfortu-
nately, (-10) is not interpreted as an operator section, but as the negative number 10.
In this case, you have to write

> map (\x -> x - 10) [1 . . 5]

Exercise 1.2.90 (medium). Try to predict the result of

> map ((-) 10) [1 . . 5]

and verify your prediction.

Exercise 1.2.91. Operator sections also work for backquoted function names. Try:

> map (‘mod‘3) [1 . . 10]

Exercise 1.2.92. Of course, operator sections are just normal expressions, so they have
the same type as the anonymous functions they represent. Verify, for example, that

> :t (+1)

and

> :t \x -> x + 1

lead to the same result.
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1.2.18 Loading modules

Exercise 1.2.93. So far, we have evaluated Haskell expressions in the interactive inter-
preter. We have also used let statements to assign names to functions. Furthermore, we
have used special interpreter instructions (starting with a colon) to get more informa-
tion.

We are now at a point where we move to full Haskell programs. Programs can contain
expressions, but also so-called top-level declarations, for instance to declare modules, the
visibility of functions, type classes or datatypes, and of course functions. Such top-level
declarations cannot be entered interactively. On the other hand, interpreter commands
such as :t are not part of the Haskell language and cannot be used in a program.

The simplest useful program consists of a single function. Open any text editor and
create a text file called Lab.hs. Enter the following line:

inc x == x + 1

Then save and close the file. The file now contains the definition of a single function
named inc, that adds 1 to its argument. Note that in a program, no let is required (and
not even allowed) before the name of the function, but apart from that, the declaration
of inc is equivalent to typing

> let inc x == x + 1

at the GHCi prompt.

As you will see, you have more possibilities to write programs within a file than inter-
actively at the GHCi prompt. But the good thing is that you can still test your programs
in GHCi. To make GHCi aware of your file, you have two possibilities: first, you can
type

> :l Lab.hs

if the file Lab.hs is in your current working directory (otherwise you can give a full path
name to that file). The command :l (for load) then loads the file into the interpreter.

If you start a new GHCi session, you can also pass the name of the file you’re interested
in as an argument to the GHCi command on the command line. Using the command
line argument is more convenient if you are typically working with a command line.
If you are starting GHCi by clicking on an icon, using the :l command is more conve-
nient.

After loading the source file, verify that you can use the function inc defined therein
by typing

> inc 41
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2.1 Tooling (*)

Exercise 2.1.1 (Cabal). Submit your solutions to the assignments as a Cabal package.
Turn the code (for the perms_smooth task, see exercise 2.7.1) into a library. Include
the solutions to the theoretical packages as extra documentation files. Write a suitable
package description, and include a Setup script so that the package can easily be built
and installed using Cabal. As a package name, choose a name that includes your CS
logins. Produce the file using the command cabal sdist.

2.2 Programming

Exercise 2.2.1 ((Tail) recursion). [15%] Consider the datatype

data Tree a == Leaf a | Node (Tree a) (Tree a)

The function splitleft splits off the leftmost entry of the tree and returns that entry as
well as the remaining tree:

splitleft :: Tree a -> (a, Maybe (Tree a))

splitleft (Leaf a) == (a, Nothing)

splitleft (Node l r) == case splitleft l of

(a, Nothing) -> (a, Just r)

(a, Just l’) -> (a, Just (Node l’ r))

Write a tail-recursive variant of splitleft.

Hint. Generalize splitleft by introducing an additional auxiliary parameter. Recall
that functions can be used as parameters. If you do not know what “tail-recursive”
means, look up the definition somewhere.

Exercise 2.2.2 (Tree unfold). Recall unfoldr:

unfoldr :: (s -> Maybe (a, s)) -> s -> [a]

unfoldr next x ==

case next x of
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Nothing -> []

Just (y, r) -> y:unfoldr next r

We can define an unfold function for trees as well:

data Tree a == Leaf a

| Node (Tree a) (Tree a)

deriving Show

unfoldTree :: (s -> Either a (s, s)) -> s -> Tree a

unfoldTree next x ==

case next x of

Left y -> Leaf y

Right (l, r) -> Node (unfoldTree next l) (unfoldTree next r)

Task. Define the following functions using unfoldr or unfoldTree:

iterate :: (a -> a) -> a -> [a]

(The call iterate f x generates the infinite list [x, f x, f (f x), ...].)

map :: (a -> b) -> [a] -> [b]

(As defined in the prelude.)

balanced :: Int -> Tree ()

(Generates a balanced tree of the given height.)

sized :: Int -> Tree Int

(Generates any tree with the given number of nodes. Each leaf should have a unique
label.)

Exercise 2.2.3 (Use of fix). Given the function

fix :: (a -> a) -> a

fix f == f (fix f)

Define the function foldr as an application of fix to a term that is not recursive.

Exercise 2.2.4 (Trie). A trie (sometimes called a prefix tree) is an implementation of a
finite map for structured key types where common prefixes of the keys are grouped
together. Most frequently, tries are used with strings as key type. In Haskell, such a trie
can be represented as follows:

data Trie a == Node (Maybe a) (Map Char (Trie a))

A node in the trie contains an optional value of type a. If the empty string is in the
domain of the trie, the associated value can be stored here. Furthermore, the trie maps
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single characters to subtries. If a key starts with one of the chracters contained in the
map, then the rest of the key is looked up in the corresponding subtrie.

The following picture shows an example trie that maps "f" to 0, "foo" to 1, "bar" to 2

and "baz" to 3:

Nothing

Nothing

Nothing

Just 2

’r’

Just 3

’z’

’a’

’b’

Just 0

Nothing

Just 1

’o’

’o’

’f’

The implementation should obey the following invariant: if a trie (or subtrie) is empty,
i.e., if it contains no values, it should always be represented by

Node Nothing Data.Map.empty

Task. Write a module Data.Trie containing a datatype of tries as above and the follow-
ing functions:

empty :: Trie a

null :: Trie a -> Bool

valid :: Trie a -> Bool

insert :: String -> a -> Trie a -> Trie a

lookup :: String -> Trie a -> Maybe a

delete :: String -> Trie a -> Trie a

The function valid tests if the invariant holds. All operations should maintain the
invariant.

Exercise 2.2.5 (Type hiding). Define a function count such that the following program
is well-typed

test :: [Int]

test == [count, count 1 2 3, count "" [True, False] id (+)]

and evaluates to [0, 0, 0]. In other words, count should accept an arbitrary number of
arguments (of arbitrary types), and just always return 0.

Then redefine the function count such that test evaluates to [0, 3, 4], i.e., count

should return the number of arguments.
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Please submit both versions of the function.

Hint: no language extensions are required to solve this exercise.

Exercise 2.2.6 (Partial computation). The type constructor Partial can be used to de-
scribe possibly nonterminating computations in such a way that they remain produc-
tive.

data Partial a == Now a | Later (Partial a)

deriving Show

We can now describe a productive infinite loop as follows:

loop == Later loop

Even functions that terminate can produce a Later for every step they perform, allow-
ing us to judge the complexity of the computation afterwards by looking at how many
Later occurrences there are before the result.

runPartial :: Int -> Partial a -> Maybe a

runPartial _ (Now x) == Just x

runPartial 0 (Later p) == Nothing

runPartial n (Later p) == runPartial (n - 1) p

Using runPartial, we can then run a partial computation and give a bound on the
number of steps it is allowed to perform. If no result is delivered in the allowed number
of steps, Nothing is returned. Note that runPartial n loop terminates for all non-
negative choices of n.

There also is

unsafeRunPartial :: Partial a -> a

unsafeRunPartial (Now x) == x

unsafeRunPartial (Later p) == unsafeRunPartial p

that runs a partial computation with the risk of nontermination.

The Partial type constructor forms a monad:

instance Monad Partial where

return == Now

Now x >>= f == f x

Later p >>= f == Later (p >>= f)

The function tick introduces an explicit delay:

tick == Later (Now ())

Here is another example:
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psum :: [Int] -> Partial Int

psum xs == liftM sum (mapM (\x -> tick >> return x) xs)

Try psum on a couple of lists to see what it does.

It also forms a MonadPlus:

class (Monad m) => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

Here, mplus gives us a form of addition (choice) between two partial computations.
The idea is that both computations are run in parallel, and the one terminating earlier
is returned. The neutral element of this form of choice is loop, the function that never
returns.

instance MonadPlus Partial where

mzero == loop

mplus == merge

merge :: Partial a -> Partial a -> Partial a

merge (Now x) _ == Now x

merge _ (Now x) == Now x

merge (Later p) (Later q) == Later (merge p q)

Use this monad as well as mzero and mplus (or derived functions) to define a function

firstsum :: [[Int]] -> Partial Int

that performs psum on every of the integer lists and returns the result that can be ob-
tained with as few delays as possible.

Example:

runPartial 100 $ firstsum [repeat 1, [1, 2, 3], [4, 5], [6, 7, 8], cycle [5, 6]]

returns Just 9.

Unfortunately, firstsum will not work on infinite (outer) lists and

runPartial 200 $ firstsum (cycle [repeat 1, [1, 2, 3], [4, 5], [6, 7, 8], cycle [5, 6]])

will loop. The problem is that merge schedules each of the alternatives in a fair way.
When using merge on an infinite list, all computations are evaluated one step before
the first Later is produced. The solution is to write an unfair merge. Rewrite merge

such that the above test returns Just 9 and also

runPartial 200 $ firstsum (replicate 100 (repeat 1) ++ [[1]] ++ repeat (repeat 1))

returns Just 1.
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Exercise 2.2.7 (Object-orientation). Using open recursion and an explicit fixed-point
operator similar to

fix f == f (fix f)

we can simulate some features commonly found in OO languages in Haskell. In many
OO languages, objects can refer their own methods using the identifier this, and to
methods from a base object using super.

We model this by abstracting from both this and super:

type Object a == a -> a -> a

data X == X {n :: Int, f :: Int -> Int}
x, y, z :: Object X

x super this == X {n == 0, f == \i -> i + n this}
y super this == super {n == 1}
z super this == super {f == f super . f super}

We can extend one “object” by another using extendedBy:

extendedBy :: Object a -> Object a -> Object a

extendedBy o1 o2 super this == o2 (o1 super this) this

By extending an object o1 with an object o2, the object o1 becomes the super object for
o2.

Once we have built an object from suitable components, we can close it to make it
suitable for use using a variant of fix:

fixObject o == o (error "super") (fixObject o)

We close the object o by instantiating it with an error super object and with itself as
this.

Look at what the type of fixObject is and familiarize yourself with the behaviour of
fixObject by trying the following expressions:

n (fixObject x)

f (fixObject x) 5

n (fixObject y)

f (fixObject y) 5

n (fixObject (x ‘extendedBy‘ y))
f (fixObject (x ‘extendedBy‘ y)) 5

f (fixObject (x ‘extendedBy‘ y ‘extendedBy‘ z)) 5

f (fixObject (x ‘extendedBy‘ y ‘extendedBy‘ z ‘extendedBy‘ z)) 5
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2.2 Programming

Task. Define an object

zero :: Object a

such that for all types t and objects x :: Object t, the equation x ‘extendedBy‘ zero ≡
zero ‘extendedBy‘ x ≡ x hold. (You do not need to provide the proof.)

A more interesting use for these functional objects is for adding effects to functional
programs in an aspect-oriented way.

In order to keep a function extensible, we write it as an object, and keep the result value
monadic:

fac :: Monad m => Object (Int -> m Int)

fac super this n ==

case n of

0 -> return 1

n -> liftM (n*) (this (n - 1))

Note that recursive calls have been replaced by calls to this. We can now write a
separate aspect that counts the number of recursive calls:

calls :: MonadState Int m => Object (a -> m b)

calls super this n ==

do

modify (+1)

super n

We can now run the factorial function in different ways:

runIdentity (fixObject fac 5) ≡ 120

runState (fixObject (fac ‘extendedBy‘ calls) 5) 0 ≡ (120, 6)

Task. Write an aspect trace that makes use of a writer monad to record whenever a
recursive call is entered and whenever it returns. Also give a type signature with the
most general type. Use a list of type

data Step a b == Enter a

| Return b

deriving Show

to record the log. As an example, the call

runWriter (fixObject (fac ‘extendedBy‘ trace) 3)

yields

(6, [Enter 3, Enter 2, Enter 1, Enter 0, Return 1, Return 1, Return 2, Return 6])
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Exercise 2.2.8 (Enumeration). Consider the following datatype:

data GP a == End a

| Get (Int -> GP a)

| Put Int (GP a)

A value of type GP can be used to describe programs that read and write integer values
and return a final result of type a. Such a program can end immediately (End). If it
reads an integer, the rest of the program is described as a function depending on this
integer (Get). If the program writes an integer (Put), the value of that integer and the
rest of the program are recorded.

The following expression describes a program that continuously reads integers and
prints them:

echo == Get (\n -> Put n echo)

Task. Write a function

run :: GP a -> IO a

that can run a GP-program in the IO monad. A Get should read an integer from the
console, and Put should write an integer to the console.

Here is an example run from GHCi:

> run echo

? 42

42

? 28

28

? 1

1

? - 5

- 5

? Interrupted.

>

[To better distinguish inputs from outputs, this version of run prints a question mark
when expecting an input.]

Task. Write a GP-program add that reads two integers, writes the sum of the two integers,
and ultimately returns ().

Task. Write a GP-program accum that reads an integer. If the integer is 0, it returns the
current total. If the integer is not 0, it adds the integer to the current total, prints the
current total, and starts from the beginning.
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Task. Instead of running a GP-program in the IO monad, we can also simulate the be-
haviour of such a program by providing a (possibly infinite) list of input values. Write
a function

simulate :: GP a -> [Int] -> (a, [Int])

that takes such a list of input values and returns the final result plus the (possibly infi-
nite) list of all the output values generated.

A map function for GP can be defined as follows:

instance Functor GP where

fmap f (End x) == End (f x)

fmap f (Get g) == Get (fmap f . g)

fmap f (Put n x) == Put n (fmap f x)

Task. Define sensible instances of Monad and MonadState for GP. How is the behaviour
of the MonadState instance for GP different from the usual State type?

Exercise 2.2.9 (Idiom, continuation passing). Find Haskell definitions for the functions
start, stop, store, add and mul such that you can embed a stack-based language into
Haskell:

p1, p2, p3 :: Int

p1 == start store 3 store 5 add stop

p2 == start store 3 store 6 store 2 mul add stop

p3 == start store 2 add stop

Here, p1 should evaluate to 8 and p2 should evaluate to 15. The program p3 is allowed
to fail at runtime.

Once you have that, try to find a solution that rejects programs that require non-existing
stack elements during type checking.

Hint: Type classes are not required to solve this assignment. This is somewhat related
to continuations. Try to first think about the types that the operations should have, then
about the implementation.

2.3 Monads

The goal of this task is to create your own monad. In fact, you have to extend the well-
known state monad (see Control.Monad.State in the hierarchical libraries), and add
some extra features to it.

The first step is to introduce a type constructor for the new monad:
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data StateMonadPlus s a == ...

The type variables s and a have the standard meaning: s is the type of the state to
carry and a is the type of the return value. Make the new monad an instance of the
MonadState type class. Hence, you have to include:

import Control.Monad.State

We now discuss the three additional features that your monad has to support.

Feature 1: Diagnostics

We want to gather information about the number of calls to all primitive functions that
work on a StateMonadPlus. For this, you have to write a function diagnostics with
the following type:

diagnostics :: StateMonadPlus s String

This function should count the number of binds (>>=) and returns (and other primi-
tive functions) that have been encountered, including the call to diagnostics at hand.
Secondly, provide a function

annotate :: String -> StateMonadPlus s a -> StateMonadPlus s a

which allows a user to annotate a computation with a given label. The functions for
Features 2 and 3, as well as get and put, should also be part of the diagnosis.

As an example, consider the input

do return 3 >> return 4

return 5

diagnostics

which should return the string

"[bind=3, diagnostics=1, return=3]"

Note that >> is implemented in terms of >>=, and thus also counts as a bind.

Here is another example:

do annotate "A" (return 3 >> return 4)

return 5

diagnostics

This returns the string

"[A=1, bind=3, diagnostics=1, return=3]"
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Feature 2: Failure

A second feature of your monad is that it can fail during a computation. The Monad

type class offers the following member function:

fail :: (Monad m) => String -> m a

Calling this function should not result in an exception. To facilitate this, the function
runStateMonadPlus (which will be explained later) returns an Either value: Left in-
dicates that the computation failed, Right indicates success. You may have to change
the StateMonadPlus data type to cope with this.

Feature 3: History of states

The last feature is to save the current state, and to restore a previous state as the current
state. Include the following type class definition in your code, and make StateMonadPlus
an instance of this type class.

class MonadState s m => StoreState s m | m -> s where

saveState :: m ()

loadState :: m ()

The part m -> s in the class declaration is a functional dependency, indicating that the
type s is uniquely determined by the choice of m. Functional dependencies limit the
instance declarations that are valid, and in turn allow the type checker to make use of
the functional dependency while inferring type. Functional dependencies are a Haskell
language extension. To enable it, you must put a language pragma at the top of your
module:

{-# LANGUAGE MultiParamTypeClasses #-}

Saving and loading states should be implemented as a stack: saving a state means
pushing the current state on the stack, while loading a state means popping a state
from the stack to replace the current one. If loadState is called with an empty stack,
then the computation in the monad should fail (as explained for Feature 2).

Here is an example expression:

do i1 <- get; saveState

modify (*2)

i2 <- get; saveState

modify (*2)

i3 <- get; loadState

i4 <- get; loadState

i5 <- get

return (i1, i2, i3, i4, i5)
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This program should return the value (1, 2, 4, 2, 1) if we start with the state consisting
of the integer 1.

Running the monad

You have to write a function

runStateMonadPlus :: StateMonadPlus s a -> s -> Either String (a, s)

for running the monad. Given a computation in the StateMonadPlus and an initial
state, runStateMonadPlus returns either an error message if the computation failed, or
the result of the computation and the final state.

To turn your module into a proper library, you should also think about which functions
should be exposed to outside this module, and which functions should be hidden (and
only be visible inside the current module). You might want to consider re-exporting all
functionality offered by the Control.Monad.State module.

Try also to define a number of unit tests or even QuickCheck properties.

Bonus questions

Exercise 2.3.1. Do the monad laws hold for StateMonadPlus? Explain your answer.

Exercise 2.3.2. What are the advantages of hiding (constructor) functions? How impor-
tant is this for each of the three additional features supported by StateMonadPlus?

Exercise 2.3.3. What are the modifications required to make a monad transformer for
StateMonadPlus?

Exercise 2.3.4. Suppose that we want to write a function

diagnosticsFuture :: StateMonadPlus s String

which provides information about the computations in StateMonadPlus that are still to
come. Explain how this would affect your code. If you feel that such a facility cannot be
implemented, then you should give some arguments for your opinion. If you believe it
can be done, then try to do so.

2.4 Programming jointly with types and values

Exercise 2.4.1 (Fixpoint). The lambda term

y == \f -> (\x -> f (x x)) (\x -> f (x x))
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(that encodes a fixed point combinator in the untyped lambda calculus) does not type
check in Haskell. Try it! Interestingly though, recursion on the type level can be used
to introduce recursion on the value level. If we define the recursive type

data F a == F {unF :: F a -> a}

then we can “annotate” the definition of y with applications of F and unF such that y
typechecks. Do it!

Exercise 2.4.2 (Nested datatype). Here is a nested datatype for square matrices:

type Square a == Square’ Nil a

data Square’ t a == Zero (t (t a)) | Succ (Square’ (Cons t) a)

data Nil a == Nil

data Cons t a == Cons a (t a)

Give Haskell code that represents the following two square matrices as elements of the
Square datatype:

(
1 0
0 1

)
and

 1 2 3
4 5 6
7 8 9


Note: you don’t have to define any functions for the Square datatype. Defining sen-
sible functions for Square (even show) is not entirely trivial and is the topic of other
assignments.

Exercise 2.4.3 (Nested datatype). Recall the datatype of square matrices:

type Square == Square’ Nil

data Square’ t a == Zero (t (t a)) | Succ (Square’ (Cons t) a)

data Nil a == Nil

data Cons t a == Cons a (t a)

Note that I have eta-reduced the definition of Square. This turns out to be necessary in
the end where I’ll mention it again.

Let’s investigate how we can derive an equality function on square matrices. We do so
very systematically by deriving an equality function for each of the four types. We fol-
low a simple, yet powerful principle: type abstraction corresponds to term abstraction,
and type application corresponds to term application.

What does this mean? If a type f is parameterized over an argument a, then in general,
we have to know how equality is defined on a in order to define equality on f a.
Therefore we define

eqNil :: (a -> a -> Bool) -> (Nil a -> Nil a -> Bool)

eqNil eqA Nil Nil == True
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In this case, the a is not used in the definition of Nil, so it is not surprising that we do
not use eqA in the definition of eqNil. But what about Cons? The datatype Cons has
two arguments t and a, so we expect two arguments to be passed to eqCons, something
like

eqCons eqT eqA (Cons x xs) (Cons y ys) == eqA x y && ...

But what should the type of eqT be? The t is of kind * -> *, so it can’t be t -> t -> Bool.
We can argue that we should use t a -> t a -> Bool, because we use t applied to a

in the definition of Cons. However, a better solution is to recognise that, being a type
constructor of kind * -> *, an equality function on t should take an equality function on
its argument as a parameter. And, moreover, it does not matter what this parameter is!
A function like eqNil is polymorphic in type a, so let us require that eqT is polymorphic
in the argument type as well:

eqCons :: (∀b . (b -> b -> Bool) -> (t b -> t b -> Bool)) ->

(a -> a -> Bool) ->

(Cons t a -> Cons t a -> Bool)

eqCons eqT eqA (Cons x xs) (Cons y ys) == eqA x y && eqT eqA xs ys

Now you can see how we apply eqT to eqA when we want equality at type t a – the
type application corresponds to term application.

Task. A type with a ∀ on the inside requires the extension RankNTypes to be enabled.
Try to understand what the difference is between a function of the type of eqCons and a
function with the same type but the ∀ omitted. Can you omit the ∀ in the case of eqCons
and does the function still work?

Now, on to Square’. The type of eqSquare’ follows exactly the same idea as the type
of eqCons:

eqSquare’ :: (∀b . (b -> b -> Bool) -> (t b -> t b -> Bool)) ->

(a -> a -> Bool) ->

(Square’ t a -> Square’ t a -> Bool)

We now for the first time have more than one constructor, so we actually have to give
multiple cases. Let us first consider comparing two applications of Zero:

eqSquare’ eqT eqA (Zero xs) (Zero ys) == eqT (eqT eqA) xs ys

Note how again the structure of the definition follows the structure of the type. We
have a value of type t (t a). We compare it using eqT, passing it an equality function
for values of type t a. How? By using eqT eqA.

The remaining cases are as follows:

eqSquare’ eqT eqA (Succ xs) (Succ ys) == eqSquare’ (eqCons eqT) eqA xs ys

eqSquare’ eqT eqA _ _ == False
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2.5 Programming with classes

The idea is the same – let the structure of the recursive calls follow the structure of the
type.

Task. Again, try removing the ∀ from the type of eqSquare’. Does the function still
typecheck? Try to explain!

Now we’re done:

eqSquare :: (a -> a -> Bool) -> Square a -> Square a -> Bool

eqSquare == eqSquare’ eqNil

Test the function. We can now also give an Eq instance for Square – this requires the
minor language extension TypeSynonymInstances, because for some stupid reason,
Haskell 98 does not allow type synonyms like Square to be used in instance decla-
rations:

instance Eq a => Eq (Square a) where

(==) == eqSquare (==)

Task. Systematically follow the scheme just presented in order to define a Functor in-
stance for square matrices. I.e., derive a function mapSquare such that you can define

instance Functor Square where

fmap == mapSquare

This instance requires Square to be defined in eta-reduced form in the beginning, be-
cause Haskell does not allow partially applied type synonyms.

Exercise 2.4.4 (Nested datatype). Haskell does not allow partially applied type syn-
onyms.

Recall that in previous assignments, we defined

type Square == Square’ Nil

and not

type Square a == Square’ Nil a

With the former definition (and enabled TypeSynonymInstances), we can make Square
an instance of class Functor, with the latter definition, we cannot.

Why is this restriction in place? Try to find problems arising from partially applied type
synonyms, and describe them (as concisely as possible) with a few examples.

2.5 Programming with classes

Exercise 2.5.1 (Split). Consider the following class
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class Splittable a where

split :: a -> (a, a)

for types that allow values to be split. Random number generators (for instance StdGen)
allow such a split operation:

instance Splittable StdGen where

split == System.Random.split

We can also make other types an instance of Splittable. Define an instance Splittable [a]

where, assuming that the list passed is infinite, the list is split into one list containing
all the odd-indexed elements, and one containing all the even-indexed elements of the
original list.

Define an instance Splittable Int where n is split into 2 * n and 2 * n + 1.

Consider the datatype

data SplitReader r a == SplitReader {runSplitReader :: r -> a}

which is isomorphic to the Reader datatype. Define a variant of the Reader monad

instance (Splittable r) => Monad (SplitReader r)

where the passed state is split before it is passed on. Also implement the instance of
MonadReader:

instance (Splittable r) => MonadReader r (SplitReader r)

You have to pass enable the FlexibleInstances and MultiParamTypeClasses lan-
guage extensions to make GHC accept this instance. The methods of the class MonadReader
are

ask :: (MonadReader r m) => m r

that allows you to access the read state, and

local :: (MonadReader r m) => (r -> r) -> m a -> m a

that allows you to locally modify the read state.

Finally, consider the function

labelTree :: Int -> SplitReader Int (Tree Int)

labelTree 0 == return Leaf

labelTree n == return () >> liftM3 Node (labelTree (n - 1)) ask (labelTree (n - 1))

where
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2.5 Programming with classes

data Tree a == Leaf

| Node (Tree a) a (Tree a)

deriving Show

When calling runSplitReader (labelTree 3) 1, the function returns

Node (Node (Node Leaf 214 Leaf) 54 (Node Leaf 886 Leaf))

14

(Node (Node Leaf 982 Leaf) 246 (Node Leaf 3958 Leaf))

Is this what you expected? If you remove return () >> in the definition of labelTree
and try again, what happens? What do these results imply?

Exercise 2.5.2 (Context reduction). Consider the following system of classes.

class A a

class (A a) => B a

instance A Bool

instance B Bool

instance A a => A (Maybe a)

instance (A a, B a) => A [a]

Prove B Int  A (Maybe (Maybe Int)) and ∅  A (Maybe [Bool]) using the general
entailment rules as well as (super) and (inst) from Slides 10-11 to 10-15. Draw proof
trees such as on Slide 10-17.

Exercise 2.5.3 (Evidence translation). Consider the following module:

import Control.Monad.Reader

import System.Random

one :: Int

one == 1

two :: Int

two == 2

randomN :: (RandomGen g) => Int -> g -> Int

randomN n g == (fst (next g) ‘mod‘ (two * n + one)) - n

sizedInt == do

n <- ask

g <- lift ask

return (randomN n g)

What is the most general type of sizedInt? (Note that type inference may not work for
sizedInt, but you should be able to explain the error message by now and know how
to fix it. Note further that the most general type will only be accepted by GHC in a type
signature when FlexibleContexts are enabled.)
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Assuming this most general type, perfom an evidence translation for all the overload-
ing involved in the functions randomN and sizedInt. First, define the record types for
the classes involved. You can ignore the fact that literals and arithmetic operations are
overloaded and just use one and two as monomorphic integers. You only have to in-
clude those methods in the records that are actually used in the program above. Hoever,
you should consider the desugaring (you may simplify and ignore the let statements
for the patterns) of the do notation to the monad operations, as well as the overloaded
ask and lift functions. In order to define the record types correctly, you must enable
the PolymorphicComponents or RankNTypes language extensions to allow polymorphic
fields in datatypes.

Then translate randomN and sizedInt similar to the translation on Slide 10-21. You are
allowed to introduce local abbreviations using let and where for often-used expres-
sions. The resulting program must, of course, still be type correct in Haskell.

2.6 Type extensions

Exercise 2.6.1 (GADT). Here is a datatype of contracts:

data Contract :: ∗ -> ∗ where
Pred :: (a -> Bool) -> Contract a

Fun :: Contract a -> Contract b -> Contract (a -> b)

The datatype is a Generalized Algebraic Datatype (GADT). The constructors do not
both target any contract Contract a, but the Fun constructor has a restricted result type,
i.e., it can only construct function contracts. GADTs require the language flag/pragma
GADTs.

A contract can be a predicate for a value of arbitrary type. For functions, we offer
contracts that contain a precondition on the arguments, and a postcondition on the
results.

Contracts can be attached to values by means of assert. The idea is that assert will
cause run-time failure if a contract is violated, and otherwise return the original result:

assert :: Contract a -> a -> a

assert (Pred p) x == if p x then x else error "contract violation"

assert (Fun pre post) f == assert post . f . assert pre

For function contracts, we first check the precondition on the value, then apply the
original function, and finally check the postcondition on the result. Note that the case
for Fun makes use of the fact that the Fun constructor targets only function contracts.
Because of this knowledge, GHC allows us to apply f as a function.

For example, the following contract states that a number is positive:
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2.6 Type extensions

pos :: (Num a, Ord a) => Contract a

pos == Pred (>0)

We have

assert pos 2 ≡ 2

assert pos 0 ≡ ⊥ (contract violation error)

Task. Define a contract

true :: Contract a

such that for all values x, the equation assert true x ≡ x holds. Prove this equation
using equational reasoning.

Often, we want the postcondition of a function to be able to refer to the actual argument
that has been passed to the function. Therefore, let us change the type of Fun:

DFun :: Contract a -> (a -> Contract b) -> Contract (a -> b)

The postcondition now depends on the function argument.

Task. Adapt the function assert to the new type of DFun.

Task. Define a combinator

(_) :: Contract a -> Contract b -> Contract (a -> b)

that reexpresses the behaviour of the old Fun constructor in terms of the new and more
general one.

Task. Define a contract suitable for the list index function (!!), i.e., a contract of type

Contract ([a] -> Int -> a)

that checks if the integer is a valid index for the given list.

Task. Define a contract

preserves :: Eq b => (a -> b) -> Contract (a -> a)

where assert (preserves p) f x fails if and only if the value of p x is different from
the value of p (f x). Examples:

assert (preserves length) reverse "Hello" ≡ "olleH"

assert (preserves length) (take 5) "Hello" ≡ "Hello"

assert (preserves length) (take 5) "Hello world" ≡ ⊥
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Task. Consider

preservesPos == preserves (>0)

preservesPos’ == pos _ pos

Is there a difference between assert preservesPos and assert preservesPos’? If
yes, give an example where they show different behaviour. If not, try to prove their
equality using equational reasoning.

We can add another contract constructor:

List :: Contract a -> Contract [a]

The corresponding case of assert is as follows:

assert (List c) xs == map (assert c) xs

Task. Consider

allPos == List pos

allPos’ == Pred (all (>0))

Describe the differences between assert allPos and assert allPos’, and more gen-
erally between using List versus using Pred to describe a predicate on lists. (Hint:
Think carefully and consider different situations before giving your answer. What
about using the allPos and allPos’ contracts as parts of other contracts? What about
lists of functions? What about infinite lists? What about strict and non-strict functions
working on lists?)

2.7 Performance

Exercise 2.7.1 (Algorithm design). Given the following type signature

smooth_perms :: Int -> [Int] -> [[Int]]

for a function which returns all permutations of its second argument for which the
distance between each two successive elements is at most the first argument.

split [] == []

split (x:xs) == (x, xs):[(y, x:ys) | (y, ys) <- split xs]

perms [] == [[]]

perms xs == [(v:p) | (v, vs) <- split id xs, p <- perms vs]

smooth n (x:y:ys) == abs (y - x) 6 n && smooth n (y:ys)

smooth _ _ == True
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2.8 Observing: performance, testing, benchmarking

smooth_perms :: Int -> [Int] -> [[Int]]

smooth_perms n xs == filter (smooth n) (perms xs)

A straightforward solution is to generate all permutations and then to filter out the
smooth ones. This however is expensive. A better approach is to build a tree, for
which it holds that each path from the root to a leaf correspond to one of the possible
permutations, next to prune this tree such that only smooth paths are represented, and
finally to use this tree to generate all the smooth permutations from.

Now define this tree data type, a function which maps a list onto this tree, the function
which prunes the tree, and finally the function which generates all permutations.

2.8 Observing: performance, testing, benchmarking

Exercise 2.8.1 (Profiling, testing, benchmarking). Elaborate on exercise 2.7.1 by using
various observation tools:

• Give a quickCheck specification and check, by defining a function allSmoothPerms.

• Use the criterion package to make and run benchmarks for the given naive
solution and your solution, in order to find out whether your solution really gives
higher performance.

• Use heap profiles to analyse and draw conclusions about the differences.

Exercise 2.8.2 (Quickcheck). QuickCheck’s Arbitrary class is defined as follows

class Arbitrary a where

arbitrary :: Gen a

The type Gen is defined as

newtype Gen a == MkGen {unGen :: StdGen -> Int -> a}

(These definitions are from QuickCheck-2. The definitions in QuickCheck-1 are slightly
different, but essentially the same. It does not matter which version you use.) Look
at the QuickCheck source code for the definition of the monad instance. Assemble an
equivalent monad from the Reader and SplitReader monads or monad transformers.

Define the function sizedInt :: Gen Int just using ask, lift and System.Random.randomR

(i.e., not using the internal structure of the Gen type), such that sizedInt generates a
random number between -n and n where n is the read integer.

Exercise 2.8.3 (Profiling). Generate heap profiles for the following functions:

rev == foldl (flip (:)) []

rev’ == foldr (\x r -> r ++ [x]) []
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by using them as function f in a main program as follows

main == print $ f [1 . . 1000000]

(adapt the size of 1000000 according to the speed of your machine to get good results).
Interpret and try to explain the results!

Do the same for

conc xs ys == foldr (:) ys xs

conc’ == foldl (\k x -> k . (x:)) id

with

main == print $ f [1 . . 1000000] [1 . . 1000000]

(where f is conc or conc’).

Finally, have a look at

f1 == let xs == [1 . . 1000000] in if length xs > 0 then head xs else 0

f2 == if length [1 . . 1000000] > 0 then head [1 . . 1000000] else 0

with

main == print f

(where f is f1 or f2).

Remember that the main point of this assignment is not to send in the heap profiles, but to
explain them!

Exercise 2.8.4 (Forcing evaluation). Write a function

forceBoolList :: [Bool] -> r -> r

that completely forces a list of booleans without using seq. Note that pattern matching
drives evaluation.

Explain why the function forceBoolList has the type as specified above and not

forceBoolList :: [Bool] -> [Bool]

and why seq is defined as it is, and

force :: a -> a

force a == seq a a

is useless.
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2.9 Reasoning (inductive, equational)

Exercise 2.8.5 (Type complexity). A curious fact is that Haskell’s type system (even that
of Haskell without extensions) has exponential space and time complexity. However,
the worst case rarely occurs in practice such that the run-time behaviour of the type
checker generally is acceptable. Define a family of Haskell expressions such that the
type (i.e., the size of the type expression) grows exponentially in the size of the program.
Note that if the type is highly repetitive, the type can internally be represented using
sharing. However, different type variables cannot be shared. So, to get a truly large
type, you have to try to get as many different type variables as possible. If you find
your solution on the internet explain how it works!

2.9 Reasoning (inductive, equational)

Exercise 2.9.1 (Induction over tree). Consider the following definitions:

data Tree a == Leaf a

| Node (Tree a) (Tree a)

deriving Show

size :: Tree a -> Int

size (Leaf a) == 1

size (Node l r) == size l + size r

length :: [a] -> Int

length [] == 0

length (x:xs) == 1 + length xs

flatten :: Tree a -> [a]

flatten (Leaf a) == [a]

flatten (Node l r) == flatten l ++ flatten r

(++) :: [a] -> [a] -> [a]

[] ++ ys == ys

(x:xs) ++ ys == x:(xs ++ ys)

Prove the following Theorem using equational reasoning:

∀(t :: Tree a) . length (flatten t) ≡ size t

Note that using the induction principle on trees, it is sufficient to show the following
two cases:

∀(x :: a) . length (flatten (Leaf x)) ≡ size (Leaf x)

and

∀(l :: Tree a) (r :: Tree a) .

( length (flatten l) ≡ size l

&& length (flatten r) ≡ size r

) -> length (flatten (Node l r)) ≡ size (Node l r)

To prove the Theorem, you will need to prove the following Lemma first:

∀(xs :: [a]) (ys :: [a]) . length (xs ++ ys) == length xs + length ys

61



2 Smaller per topic exercises

You may use facts about (+) such that (+) is associative or that 0 is the neutral element
of addition.

Exercise 2.9.2 (Isomorphism). Show that the following two types are isomorphic if we
ignore the presence of undefined values:

type A r a == (r, a -> r -> r)

and

type B r a == Maybe (a, r) -> r

In other words, define functions

f :: A r a -> B r a

and

g :: B r a -> A r a

such that ∀(x :: B r a) . f (g x) == x and ∀(x :: A r a) . g (f x) == x. Prove these two
statements using equational reasoning.

The first proof is an equality between functions. In order to prove that two functions
are equal, prove that they return equal results for equal arguments. I.e., instead of the
statement given above, prove instead that

∀(x :: B r a) (y :: Maybe (a, r)) . f (g x) y == x y

For the second proof, you can use eta-reduction, another transformation for lambda-
terms. If f is a function, then \x -> f x is equivalent to f.

2.10 IO, Files, Unsafety, and the rest of the world (∗∗)

2.10.1 IO Unsafety (1)

Exercise 2.10.1 (IO unsafety). Consider a function of type

runIO :: IO a -> a

Why is such a function dangerous? (There are several reasons. Try to give example pro-
grams that are dangerous or even demonstrate that something strange and unexpected
is going on.)
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2.10 IO, Files, Unsafety, and the rest of the world (∗∗)

Exercise 2.10.2 (IO). Formulate why the following program is troublesome in Haskell
(look at the types).

import System.IO.Unsafe

import Data.IORef

main ==

let x == unsafePerformIO (newIORef [])

in do

writeIORef x "abc"

ys <- readIORef x

putStrLn (show (ys :: [Int]))

Find out how the ML language family (SML, OCaml, F#) prevents this problem

Describe their approach in relation to Haskell’s. Keep the explanation short and precise
(no more than 60 words).

2.10.2 Server

Exercise 2.10.3 (Chat server). Using STM and the Network library, write a simple chat
server and client. The server should listen on a particular port (say 9595) for incom-
ing connections. The client should take the hostname to connect to and a nickname as
command line arguments and try to connect to that port. Upon connection, the client
should register itself and the nickname with the server. The clients should read mes-
sages from the user and display messages from the server. The server should broad-
cast any message received from any client to all clients (mentioning the nickname).
The server should also notify clients about new nicknames joining the chat, and about
clients who have left the chat.

Do not include any other features in the programs. Instead, try to keep the code as short
and concise and elegant as possible.

2.10.3 IO Unsafety (2)

The goal of this task is to show how dangerous it is to have unsafePerformIO :: IO a ->

a available in the langauge.

The solution to this assignment is easy to find on the internet. So if you want to actually
find out yourself, don’t look.

Import the following modules

import Data.IORef

import System.IO.Unsafe
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Exercise 2.10.4. Play a bit with the IORef functions

newIORef

readIORef

writeIORef

That implement mutable variables (references) in Haskell.

Exercise 2.10.5. Implement a “running total” program without passing state explicitly,
and not using a state monad, but by using a integer reference.

Exercise 2.10.6. Use the function unsafePerformIO to define a value

anything :: IORef a

Can you already see that this looks like a dangerous type?

Exercise 2.10.7. Use unsafePerformIO and anything to define a function

cast :: a -> b

that abandons all type safety. Play with cast a bit and try things like

> cast False :: Int

Try to make GHCi crash with a segmentation fault.

2.11 Generic Programming (***)

Exercise 2.11.1 (SYB show & read). Via classes Show and Read Haskell values can be
encoded as strings and read (parsed) back using show and read respectively. As such
show and read can be used as a poor man’s serialization mechanism similar to encode

and decode (from the SYB slides). Look up the implementation of Show and Read (part
of the base package of the Haskell Platform) and re-implement Show and Read using
the syb package. Use Quickcheck to test your generic SYB based show and read imple-
mentation against the default show and read. It may well be that not all corner cases of
showing and reading can be covered. If so, explain where and why this happens.

Exercise 2.11.2 (Generic Deriving show & read). Redo exercise 2.11.1 for read only,
using the generic deriving mechanism available in GHC. Be inspired by the module
Generic.Deriving.Show for the already implemented show.

2.12 Lists (*)

The goal of this assigment is to become more familiar with defining Haskell functions
by writing a few functions of your own, mostly on lists.
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2.12 Lists (*)

Sorting

Exercise 2.12.1. Write a function

flatten :: [[Int]] -> [Int]

that flattens a list of lists of integers to a list of integers.

Example:

> flatten [[2, 3], [5, 7, 11]]

[2, 3, 5, 7, 11]

Use the standard way to define functions on lists: pattern matching on the constructors.
Use recursion in the appropriate place.

Exercise 2.12.2. Find the most general type for flatten in the previous assignment,
and adapt the type signature accordingle.

Exercise 2.12.3. Write a function

insert :: Int -> [Int] -> [Int]

that inserts an integer at the right position in an already sorted list.

Example:

> insert 5 [2, 3, 7, 11]

[2, 3, 5, 7, 11]

Again, use pattern matching on lists to define insert. Furthermore, use if-then-else
or guards to distinguish the important cases.

Exercise 2.12.4. Write a function

sort :: [Int] -> [Int]

that sorts a list of integers.

Example:

> sort [5, 11, 2, 7, 3]

[2, 3, 5, 7, 11]

Use the function insert from the previous exercise.
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Fold

The higher-order function foldr is defined as follows:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr cons nil [] == nil

foldr cons nil (x:xs) == cons x (foldr cons nil xs)

The function can be used to express a large number of list traversal functions. In par-
ticular, flatten and sort can be written as calls to foldr,

As an example, consider the function add that adds a list of integers:

add :: [Int] -> Int

add [] == 0

add (x:xs) == x + add xs

Using foldr, we use 0 for nil and the (+) operator for cons and can equivalently write

add :: [Int] -> Int

add == foldr (+) 0

Exercise 2.12.5. Write flatten as an application of foldr.

Exercise 2.12.6. Write sort as an application of foldr.

2.13 Trees (*)

The goal of this task is to work with binary trees. Start a new module and define a
datatype of binary trees as follows:

data Tree a == Leaf

| Node (Tree a) a (Tree a)

deriving Show

The deriving Show instructs Haskell to automatically generate a function that allows
GHCi (and you) to show and print trees on screen.

Exercise 2.13.1. Write a function

single :: a -> Tree a

that builds a tree with a single element.

Example:

> single 3

Node Leaf 3 Leaf
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Exercise 2.13.2. Write a function

size :: Tree a -> Int

that counts the number of nodes in a tree.

Example:

> size (Node (single 4) 7 (single 5))

3

Exercise 2.13.3. Write a function

height :: Tree a -> Int

that counts the height of a tree (the maximal distance of the root to a leaf).

Example:

> height (Node (single 4) 7 (Node (single 1) 3 (single 7)))

4

Exercise 2.13.4. Write a function that flattens a tree into a list

flatten :: Tree a -> [a]

Example:

> flatten (Node (single 4) 7 (single 5))

[4, 7, 5]

Exercise 2.13.5. Write a function that reverses a tree

reverse :: Tree a -> Tree a

Example:

> reverse (Node (single 4) 7 (single 5))

Node (Node Leaf 5 Leaf) 7 (Node Leaf 4 Leaf)

Exercise 2.13.6 (medium). Write a function that implements tree-sort, an algorithm that
is similar to quicksort: given a nonempty list, take the first element, partition the list
in all element smaller of equal and all elements larger, and create a node with the first
element in the root, and recursively invoke the function build the left and right subtrees.
The resulting tree should be a binary search tree.

treesort :: Ord a => [a] -> Tree a

Calling flatten on the result of treesort should yield a sorted list.
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Exercise 2.13.7. Write a function that checks if a tree is a binary search tree.

bst :: Ord a => Tree a -> Bool

Exercise 2.13.8 (medium). Write a function that labels a tree, each node differently, by
traversing the tree, maintaining a state, and assigning a new number to every node.

labelTree’ :: Tree a -> State Int (Tree Int)

Remember to import Control.Monad.State to access the state monad. There is a func-
tion

runState :: State s a -> s -> (a, s)

you can use to pass in an initial state and get at the final state and result in the end:

labelTree :: Tree a -> Tree Int

labelTree t == fst (runState (labelTree t))
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3 Larger programming tasks

3.1 Lists for database representation (*)

In this exercise we will read in a database, perform a simple query on it and
present the results to the user in an aesthetically pleasing form. Most exer-
cises can be completed by combing functions from the Prelude and the li-
braries Data.Char, Data.List and Data.Maybe and contain a hint on which
functions you could use from these libraries; often a completely different so-
lution, not using these functions, is also possible. A starting framework and
the sample database can be found on the Assignments page on the course
website.

3.1.1 Parsing

A plain text database consists of a number of lines (each line is called a row), with on
each line a fixed number of fieds separated by a single space. The first row a database
table is called the header and contains the names of the columns in the table. An example
of such a database would be:

first last gender salary

Alice Allen female 82000

Bob Baker male 70000

Carol Clarke female 50000

Dan Davies male 45000

Eve Evans female 275000

One way of modeling such databases in Haskell would be using the following types:

type Field == String

type Row == [Field]

type Table == [Row]

A field is always modeled as a string (even though the database may contain strings
that look very much like numbers), a row is a list of fields and a table a list of rows.
The head of this list corresponds to the header of the table. (A valid table always has a
header and always has at least one column.)
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There are several “problems” with this model: for example, it does not enforce that
each of the rows in the table must have the same number of fields. However, for the
purposes of this first assignment it will suffice. You may assume that all the databases
that are presented to program will be well-formed, that is to say, they will always have
the same number of fields on each line.

The form in which data is stored inside a file, printed or written on paper, or entered
from the keyboard is called its concrete syntax. The form in which data is manipulated
inside a program is called its abstract syntax. The process of transforming some object
represented in its concrete syntax into its representation in abstract syntax is called
parsing.

Exercise 3.1.1. Write a function parseTable :: [String] -> Table that parses a table
represented in its concrete syntax as a list of strings (each corresponding to a single line
in the input) into its abstract syntax. (Hint: use the function words from the Prelude.)

3.1.2 Pretty printing

In the previous exercise we have seen how we can turn concrete syntax into abstract
syntax. The reverse operation—turning abstract syntax into concrete syntax—is often
called pretty printing or compilation. In our case we do not want to convert our abstract
syntax into the original concrete syntax, but into a different concrete syntax that is easier
to read for humans:

+-----+------+------+------+

|FIRST|LAST |GENDER|SALARY|

+-----+------+------+------+

|Alice|Allen |female| 82000|

|Bob |Baker |male | 70000|

|Carol|Clarke|female| 50000|

|Dan |Davies|male | 45000|

|Eve |Evans |female|275000|

+-----+------+------+------+

An apt name for this process might be “prettier printing”. Note that we have done
several things to make the result look nice:

1. We have made the width of each column exactly as wide as the widest field in this
column (including the name in the header).

2. We have added a very fancy looking border around the table, the header and
columns.

3. We have typeset the names of the columns in the header in uppercase.

4. We have right-aligned fields that look like (whole) numbers.
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Exercise 3.1.2. Write a function printLine :: [Int] -> String that, given a list of
widths of columns, returns a string containing a horizontal line. For example, printLine [5, 6, 6, 6]

should return the line "+-----+------+------+------+". (Hint: use the function
replicate.)

If you can write this function using foldr you will get more points for style.

Exercise 3.1.3. Write a function printField :: Int -> String -> String that, given a
desired width for a field and the contents of a fields, returns a formatted field by adding
additional whitespace. If the field only consists of numerical digits, the field should be
right-aligned, otherwise it should be left-aligned. (Hint: use the functions all, isDigit
and replicate.)

The function printField should satisfy the property:

∀n s . n >= length s => length (printField n s) == n

Later in the course we shall see how we can use these properties to test the correct-
ness of a program, or even proved that such properties must always hold for a given
program.

Exercise 3.1.4. Write a function printRow :: [(Int, String)] -> String that, given a
list of pairs—the left element giving the desired length of a field and the right element
its contents—formats one row in the table. For example,

printRow [(5, "Alice"), (6, "Allen"), (6, "female"), (6, "82000")]

should return the formatted row

"|Alice|Allen |female| 82000|"

(Hint: use the functions intercalate, map and uncurry.)

Exercise 3.1.5. Write a function columnWidths :: Table -> [Int] that, given a table,
computes the necessary widths of all the columns. (Hint: use the functions length,
map, maximum and transpose.)

Exercise 3.1.6. Write a function printTable :: Table -> [String] that pretty prints the
whole table. (Hint: use the functions map, toUpper and zip.)

3.1.3 Querying

Finally we will write a few simple query operations to extract data from the tables.
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Exercise 3.1.7. Write a function select :: Field -> Field -> Table -> Table that given
a column name and a field value, selects only those rows from the table that have the
given field value in the given column. For example, applying the query operation

select "gender" "male"

to the table

+-----+------+

|FIRST|GENDER|

+-----+------+

|Alice|female|

|Bob |male |

|Carol|female|

|Dan |male |

|Eve |female|

+-----+------+

should result in the table

+-----+------+

|FIRST|GENDER|

+-----+------+

|Bob |male |

|Dan |male |

+-----+------+

If the given column is not present in the table then the table should be returned un-
changed. (Hint: use the functions (!!), elemIndex, filter and maybe.)

Exercise 3.1.8. Write a function project :: [Field] -> Table -> Table that projects sev-
eral columns from a table. For example, applying the query operation

project ["last", "first", "salary"]

to the table

+-----+------+------+------+

|FIRST|LAST |GENDER|SALARY|

+-----+------+------+------+

|Alice|Allen |female| 82000|

|Carol|Clarke|female| 50000|

|Eve |Evans |female|275000|

+-----+------+------+------+
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should result in the table

+------+-----+------+

|LAST |FIRST|SALARY|

+------+-----+------+

|Allen |Alice| 82000|

|Clarke|Carol| 50000|

|Evans |Eve |275000|

+------+-----+------+

If a given column is not present in the original table it should be omitted from the
resulting table. (Hint: use the functions (!!), elemIndex, map, mapMaybe, transpose.)

3.1.4 Wrapping up

We can tie parsing, printing and two query operations together using:

exercise :: [String] -> [String]

exercise == parseTable> select "gender" "male"

> project ["last", "first", "salary"]> printTable

and have the program reads and write from and to standard input and standard output
using:

main :: IO ()

main == interact (lines> exercise> unlines)

3.1.5 Reflection

The following questions are intended to help provoke some reflective thoughts about
the exercise you just made and what you just learned. You can leave the answers in a
comment at the end of your source code. Write clearly, but briefly; say neither more,
nor less, than is necessary.

Question 3.1.1. Assume you were asked to implement this program in an imperative
programming language such as C] or Java, but were not provided with as much guid-
ance on how to structure your program, nor had made this exercise in a functional
language before. How would you have structured your program?

Question 3.1.2. Now that you have made this exercise in a functional programming
language, do you think that you would implement this program differently in an im-
perative language than if you had not? Especially think about the amount of work a
particular function does, the types of the functions, the use of higher-order functions,
and the use of side-effects (System.Console.WriteLine is a side-effecting function!)
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Question 3.1.3. In Exercise 3.1.3 we mentioned that printField should satisfy the
property ∀n s . n >= length s => length (printField n s) == n. Does it also sat-
isfy the property ∀n s . length (printField n s) == n? Would it be a problem in this
program if it would not?

Question 3.1.4. The property ∀n s . n >= length s => length (printField n s) ==

n is written in a mixture of predicate logic and Haskell. Could you express it as a
mixture of predicate logic and C] or Java? How would you have phrased this property
if you had implemented printField using System.Console.WriteLine? If I wrongly
claimed that your program does not meet its specification, which of the formulations
would you prefer to use to argue that you deserve a higher grade?

Question 3.1.5. In the function printTable, how often do you compute the required
widths of the fields?

Question 3.1.6. While we guaranteed the input database contains at least one column,
it is actually possible to create an “empty” table with no columns using the project

operation (We will be nice and not test for this corner case, however.) How do you
think such an empty table should be represented in both its abstract and its concrete
syntax? Could someone else have a different opinion on this matter? Which of your
functions would you have to modify to correctly handle this case?

3.2 Data structures for game state representation (∗∗)

In this exercise we will implement a simple game called Butter, Cheese and
Eggs (also known as Tic-Tac-Toe or Noughts-and-Crosses on the other side of
the sea). You may have played this game before, but if you’re a little foggy
on the rules then you can have a look at https://en.wikipedia.org/wiki/
Tic-tac-toe.

3.2.1 Rose trees

A rose tree or multi-way tree is a tree data structure in which each node can store one
value and each node can have an arbitrary number of children. Rose trees can be rep-
resented by the algebraic data type:

data Rose a == a:>[Rose a]

Note that here :> is a constructor written in infix notation. In your source code you can
write it as :>. In Haskell, infix constructors can only consist of symbols and must start
with a colon.

Exercise 3.2.1. Write functions root :: Rose a -> a and children :: Rose a -> [Rose a]

that return the value stored at the root of a rose tree, respectively the children of the
root of a rose tree.
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3.2 Data structures for game state representation (∗∗)

Exercise 3.2.2. Write functions size :: Rose a -> Int and leaves :: Rose a -> Int

that count the number of nodes in a rose tree, respectively the number of leaves (nodes
without any children).

3.2.2 Game state

The state of a (turn-based board) game will generally consist of the player whose turn
it is and what is currently on the board. The current player in a two-person game can
be represented by the data type:

data Player == P1 | P2

Exercise 3.2.3. Write a function nextPlayer :: Player -> Player that given the player
whose move it is currently, will return the player who will make a move during the
next turn.

The board in Butter, Cheese and Eggs consists of nine fields, each either containing a cross
or a circle, or being blank:

data Field == X | O | B

Exercise 3.2.4. Write a function symbol :: Player -> Field that gives the symbol a
particular player uses. (By centuries-old tradition the first player always uses a cross.)

A row consists of three horizontally, vertically or diagonally adjacent fields:

type Row == (Field, Field, Field)

We can then compose the board from three horizontal rows:

type Board == (Row, Row, Row)

Exercise 3.2.5. This representation gives us easy access to the horizontal rows, but
not to the vertical and diagonal ones. Write two functions verticals :: Board ->

(Row, Row, Row) and diagonals :: Board -> (Row, Row) that do.

Exercise 3.2.6. Define a constant emptyBoard :: Board that represents the empty board.

Exercise 3.2.7. Write a function printBoard :: Board -> String that nicely formats
a board as a string. For example, printBoard someBoard should return the string
"O| | \n-+-+-\n |X| \n-+-+-\n | | \n".
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3.2.3 Game trees

A game tree is a rose tree where all the nodes represent game states and all the children
of a node represent the valid moves than can be made from the state in the parent node.

Exercise 3.2.8. Write a function moves :: Player -> Board -> [Board] that, given the
current player and the current state of the board, returns all possible moves that player
can make expressed as a list of resulting boards. (For now, you should continue making
moves, even if one of the players has already won.)

Exercise 3.2.9. Write a function hasWinner :: Board -> Maybe Player that, given a
board, returns which player has won or Nothing if none of the players has won (ei-
ther because the game is still in progress, or because it is a draw).

Exercise 3.2.10. Write a function gameTree :: Player -> Board -> Rose Board that com-
putes the game tree. (Here you should make sure that you stop making moves once
one of the players has won.)

3.2.4 Game complexity

Game theorists have defined various measures of how hard a particular game is, called
the complexity of a game. One of those measures is the game tree complexity, which is the
number of leaves in the game tree.

Exercise 3.2.11. Define a constant gameTreeComplexity :: Int that computes the game
tree complexity of Butter, Cheese and Eggs.

3.2.5 Minimax

We can use a game tree to implement an intelligent computer opponent (AI) for us to
play against. This can be done using the minimax algorithm. The name of this algorithm
stems from the fact that if we would assign a score to each leaf of the game tree (1 if we
win, 0 if it’s a draw, and −1 if we lose) then for each internal node where we make a
move, we always make a move that maximizes our score (and take this as the score for
the internal node), while for internal nodes where the opponent makes a move, we can
assume they make a move that minimizes our score (and take this as the score for the
internal node).

76



3.2 Data structures for game state representation (∗∗)

= max

×
= min

× ◦
= max

...

× ◦
× ◦
×

= 1

...

×
= min

◦ ×
= max

...

◦ × ×
◦

× ◦
= −1

...

... ×
= min

◦

×
= max

...

◦ × ◦
× ◦ ×
× ◦ ×

= 0

...

Exercise 3.2.12. Write a function minimax :: Player -> Rose Board -> Rose Int that
computes the minimax tree for a given player and game tree. Here are some hints:

1. You must treat leaves of the tree (nodes that do not have any children) differently
from the internal nodes of the tree (nodes that do have children).

2. The first argument of minimax is the Player you are calculating the minimax tree
for. This argument is kept constant throughout the whole computation. It is use-
ful to introduce a helper function minimax’ that takes another Player argument.
This is the player that is allowed to make a move, and alternates at every level of
tree as you recurse through it.

If you correctly and elegantly implemented the minimax function then its implementa-
tion should use the minimum and maximum functions. These functions find the minimum
and maximum of arbitrary lists of numbers and will thus always have to look at every
element in the lists. However, we know that the lists we encounter will only contain
the numbers 1, 0 or −1. Thus if minimum (respectively maximum) encounters the element
−1 (respectively 1) we already know what the optimum is going to be and do not have
to continue looking any further.

Exercise 3.2.13. Write lazier versions of minimum and maximum (and name them minimum’

and maximum’) that stop looking for a smaller, respectively larger, number in their input
list once they encounter the optimum of −1, respectively 1.

If you replace the calls to minimum and maximum with minimum’ and maximum’ in the
minimax function, then the function will stop looking for an optimum once it has al-
ready found one. By “magic” of lazy evaluation the program will not only stop looking
for a more optimal optimum that can never exist, it will also not bother generating
whole parts of the minimax and game trees. This will make the program run several
times faster.
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Exercise 3.2.14. Write a function makeMove :: Player -> Board -> Maybe Board that
makes an optimal move (if it is still possible to make a move).

3.2.6 Wrapping up

The starting framework contains a main function that—assuming you have implemented
all of the above exercise correctly—allows you to play the game against a human or
computer opponent. Of course—again assuming you have implemented all exercises
correctly—you will never be able to beat the computer opponent.

3.2.7 Further research

Here are some suggestion for “further research”, if you are finished early with the as-
signment and are feeling bored. You do not have to hand them in.

1. Generalize the game to kn (i.e., n-dimensional Butter, Cheese and Eggs on a k ×
· · · × k board). It will be inconvenient to represent your board as nested tuples in
this case. Instead, consider using an Array.

2. Use the same techniques to play other games such as Connect Four, Othello,
Checkers, Chess, or Go; to solve 15 Puzzles or Rubik’s Cubes; or to optimize
Starcraft build orderings. For these games you are unlikely to be able to fully tra-
verse the whole game tree to determine who wins, so you will probably want to
use alpha–beta pruning and an evaluation function on a partial game tree instead
of minimax on a complete game tree.

3. You can use the various rotational and reflective symmetries of the game board to
reduce the size of the of the game tree by two orders of magnitude. Additionally,
some sequences of moves will eventually result in the same game board, so it can
be advantageous to represent the game as a directed acyclic graph instead of a
tree. Use these techniques to speed up the AI even further.

3.3 Type classes and containers (∗∗)

In this assignment we’ll present a few type classes and ask you to implement
some instances of them.

3.3.1 Functors

Recall the rose tree data structure from the previous assignment:

data Rose α == αB [Rose α]
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3.3 Type classes and containers (∗∗)

Similarly to how we might want to apply a function uniformly to all elements in a list,
we might also want to apply a function uniformly to all the elements in a rose tree, or
any other container-like data structure for that matter. For this purpose Haskell has a
Functor type class, exposing a single function fmap that generalizes the map function:

class Functor f where

fmap :: (α -> β) -> f α -> f β

We see that fmap generalizes map by giving a Functor instance for lists:

instance Functor [] where

fmap == map

Verify that fmap and map have the same type if we instantiate f to [].

Exercise 3.3.1. Write a Functor instance for the Rose data type.

3.3.2 Monoids

A monoid is an algebraic structure over a type m with a single associative binary opera-
tion (�) :: m -> m -> m and an identity element mempty :: m.

class Monoid m where

mempty :: m

(�) :: m -> m -> m

Lists are monoids:

instance Monoid [] where

mempty == []

(�) == (++)

Verify that (++) is an associative operation (i.e., that ∀xs ys zs.(xs++ys)++zs==xs++

(ys ++ zs)) and that the empty list [] is indeed an identity element with respect to list
concatenation (++) (i.e., that ∀ls . [] ++ ls == ls and ∀ls . ls ++ [] == ls).

Numbers also form a monoid, both under addition with 0 as the identity element, and
under multiplication with 1 as the identity element (verify this). However, we are only
allowed to give one instance per combination of type and type class. To overcome this
limitation we create some newtype wrappers:

newtype Sum α == Sum {unSum :: α}
newtype Product α == Product {unProduct :: α}

Now we can give two instances:

instance Num α => Monoid (Sum α) where

mempty == Sum 0

Sum n1 � Sum n2 == Sum (n1 + n2)
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Exercise 3.3.2. Complete the second instance by writing a Monoid instance for numbers
under multiplication.

3.3.3 Foldable

If f is some container-like data structure storing elements of type m that form a monoid,
then there is a way of folding all the elements in the data structure into a single element
of the monoid m.

class Functor f => Foldable f where

fold :: Monoid m => f m -> m

In the case of lists:

instance Foldable [] where

fold == foldr (�) mempty

Exercise 3.3.3. Write a Foldable instance for Rose.

It might be the case that we have a container-like data structure storing elements of
type α that do not yet form a monoid, but where we do have a function of type α -> m

that makes them into one. In such situation it would be convenient to have a function
foldMap :: Monoid m => (α -> m) -> f α -> m that first injects all the elements of the
container into a monoid and then folds them into a single monoidal value.

Exercise 3.3.4. Add a default implementation of foldMap to the Foldable type class,
expressed in terms of fold and fmap.

Exercise 3.3.5. Write functions fsum, fproduct :: (Foldable f, Num α) => f α -> α
that compute the sum, respectively product, of all numbers in a container-like data
structure.

3.4 Class instances and datastructures for a game of Poker
(∗∗)

If we want to implement a poker game, we need to represent playing cards, hands and
have way of ranking hands:

data Rank == R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | J | Q | K | A

deriving (Bounded, Enum, Eq, Ord)

data Suit == S | H | D | C

deriving (Bounded, Enum, Eq, Ord, Show)

data Card == Card {rank :: Rank, suit :: Suit}
type Deck == [Card]
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3.4.1 Show

Exercise 3.4.1. Define a Show instance for Rank that shows the ranks as "2", "3", "4",
"5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" respectively.

Exercise 3.4.2. Give a Show instance for Card showing Card {rank == R2, suit == H} as
"2H".

Exercise 3.4.3. Define constants fullDeck, piquetDeck :: Deck that give a full 52-card
deck and a 32-card Piquet deck (with cards of ranks from 7 up to and including the
Ace).

3.4.2 Ord

A poker hand can be represented as:

newtype Hand == Hand {unHand :: [Card]}

and the various hand categories as:

data HandCategory

== HighCard [Rank]

| OnePair Rank [Rank]

| TwoPair Rank Rank Rank

| ThreeOfAKind Rank Rank Rank

| Straight Rank

| Flush [Rank]

| FullHouse Rank Rank

| FourOfAKind Rank Rank

| StraightFlush Rank

deriving (Eq, Ord, Show)

If you are not familiar with the ranking of poker hands then https://en.wikipedia.

org/w/index.php?title=List_of_poker_hands&oldid=574969062 would be a good
place to refer to.

The fields stored together with each category are used to distinguish between hands of
the same category. For example, for a HighCard the field of type [Rank] contains all
five cards in the hand, sorted from high to low. In the case of a TwoPair the first Rank is
that of the high pair, the second Rank that of the low pair, and the third Rank that of the
kicker (the card that isn’t part of any of the two pairs).

Convince yourself that the derived Ord instance correctly ranks poker hands repre-
sented as a HandCategory.

We are now going to write a function that converts hands of type Hand into hands of
type HandCategory. First we’ll need a few helper functions:
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Exercise 3.4.4. Write a function sameSuits :: Hand -> Bool that returns True if all cards
in a Hand are of the same suit.

Exercise 3.4.5. Write a function isStraight :: [Rank] -> Maybe Rank that return a Just

with the highest ranked card, if the Hand is a straight (or a straight flush). Note that the
Ace can count both as the highest and as the lowest ranked card in a straight!

Exercise 3.4.6. Write a function ranks :: Hand -> [Rank] that converts a Hand into a list
of Ranks, ordered from high to low.

Exercise 3.4.7. Write a function order :: Hand -> [(Int, Rank)] that converts a Hand

into a list of Ranks paired with their multiplicity, order from high to low using a lexico-
graphical ordering. For example, the hand ["7H", "7D", "QS", "7S", "QH"] should be
ordered as [(3, R7), (2, Q)].

Exercise 3.4.8. Finally, write a function handCategory :: Hand -> HandCategory that
converts a Hand into a HandCategory.

Exercise 3.4.9. Using handCategory, write an Ord instance for Hand.

3.4.3 Combinatorics

Exercise 3.4.10. Write a function combs :: Int -> [a] -> [[a]] that returns all the com-
binations that can be formed by taking n elements from a list.

Exercise 3.4.11. Write a function allHands :: Deck -> [Hand] that returns all combina-
tions of 5-card hands than can be taken from a given deck of cards

3.4.4 Data.Set

The Ord class on Hand induces an equivalence relation on poker hands. This can be
useful when using functions or data structures that require an Ord instance on the data
they are working with.

One example of such a data structure is Data.Set: a data structure that can only store
unique elements. Uniqueness is determined by the equivalence relation induced by an
Ord instance.

Exercise 3.4.12. Write a function distinctHands :: Deck -> Set Hand that constructs a
maximal set of distinct hands from deck. (Hints: You will need the empty and insert

functions from Data.Set. Use foldl’ instead of foldr to avoid a stack overflow when
applying this function to large decks.)
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3.5 Monads for a gambling game (***)

3.4.5 Questions

Question 3.4.1. Do numbers1 form a monoid under subtraction? If so, give the identity
element. Do numbers form a monoid under division?

Does Bool form a monoid under conjunction (&&)? Does Bool form a monoid under
the biconditional (==)?

Question 3.4.2. Sheldon wants to implement Rock-paper-scissors-lizard-Spock in Haskell.
He defined a data type:

data Gesture == Rock | Paper | Scissors | Lizard | Spock

and now wants to define an Ord instance for this data type that specifies which of two
gestures beats the other.

Explain why this is not a good idea. The answer can be found by carefully reading the
documentation of Data.Ord or imagining what happens if you sort a list of gestures
using such an ordering.

3.5 Monads for a gambling game (***)

In this assignment we’ll ask you to implement a probability monad and an
instrumented state monad.

3.5.1 A Game of Chance

Here’s a game I like to play: I toss a coin six times and count the number of heads I
see, then I roll a dice; if the number of eyes on the dice is greater than or equal to the
number of heads I counted then I win, else I lose. As I’m somewhat of a sore loser, I’d
like to know my chances of winning beforehand, though.

There are three ways to compute this probability:

1. Use a pen, paper (or, if you prefer, chalk and a blackboard) and some basic discrete
probability theory to calculate the probability directly.

2. Draw or compute the complete decision tree of the game and count the number
of wins and losses.

3. Write a computer program that simulates the game to approximate the probabil-
ity.

1If you’re now asking yourself: “But what kind of numbers do you mean exactly, Sir?” then please
consider both various Haskell types having a Num instance (Integer, Rational, Float, ...) as well as
various mathematical classes of numbers (N, Z, Q, R, C, R\{0}, ...).
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As we’re computer scientists, we’ll leave the first option to the mathematicians and
focus on the second and third possibilities. In fact, using monads, we’ll see how both
can be done at the same time.

The Gambling Monad

Modeling a coin and a dice in Haskell shouldn’t pose much difficulty for you anymore:

data Coin == H | T

data Dice == D1 | D2 | D3 | D4 | D5 | D6

data Outcome == Win | Lose

The tossing of a Coin and rolling of a Dice is given by the monadic interface MonadGamble:

class Monad m => MonadGamble m where

toss :: m Coin

roll :: m Dice

Exercise 3.5.1. Write a function game :: MonadGamble m => m Outcome that implements
the game above. Read the description of the game very carefully: it is easy to make an
off-by-one error; furthermore, as tossing and rolling are side-effects the order in which
you perform them matters.

Simulation

Simulating probabilistic events requires a (pseudo)random number generator. Haskell
has one available in the System.Random library. Random number generators need to
have access to a piece of state called the seed, as such the random number generator
runs in a monad, the IO monad to be exact.

Exercise 3.5.2. Give Random instances for Coin and Dice.

Exercise 3.5.3. Give a MonadGamble instance for the IO monad.

Exercise 3.5.4. Write a function simulate :: IO Outcome -> Integer -> IO Rational

that runs a game of chance (given as the first parameter, not necessarily the game imple-
mented in Exercise 3.5.1) n times (n > 0, the second parameter) and returns the fraction
of games won.

You can now approximate to probability of winning using simulate game 10000.
Would you care to take a guess what the exact probability of winning is?
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3.5 Monads for a gambling game (***)

Decision trees

One drawback of simulation is that the answer is only approximate. We can obtain an
exact answer using decision trees. Decision trees of probabilistic games can be modeled
as:

data DecisionTree a == Result a | Decision [DecisionTree a]

In the leaves we store the result and in each branch we can take one of several possi-
bilities. As we don’t store the probabilities of each decision, we’ll have to assume they
are uniformly distributed (i.e., each possibility has an equally great possibility of being
taken). Fortunately for us, both fair coins and fair dice produce a uniform distribution.

Exercise 3.5.5. Give a Monad instance for DecisionTree. (Hint: Use the types of (>>=)
and return for guidance: it’s the most straightforward, type-correct definition that isn’t
an infinite loop. The definition will somewhat resemble that of the Monad instance for
Eval, as asked for in the last exercise in Hutton’s monad material. In both cases they’re
so-called free monads.)

Exercise 3.5.6. Give a MonadGamble instance for DecisionTree.

Exercise 3.5.7. Write a function probabilityOfWinning :: DecisionTree Outcome ->

Rational that, given a decision tree, computes the probability of winning.

You can find the exact probability of winning using probabilityOfWinning game. Was
your earlier guess correct? If you know a bit of probability theory, you can double check
the correctness by doing the pen-and-paper calculation suggested above.

Note that we used the same implementation of game to obtain both an approximate and
an exact answer.

3.5.2 Instrumented State Monad

In Hutton’s monad material we encountered the state monad (which he called ST, as it
are technically state transformers—functions mapping one state to another—that form
a monad). We’ll now give a presentation of the state monad that is closer to how they
are found in Haskell’s Control.Monad.State library.

A state monad is monad with additional monadic operations get and put:

class Monad m => MonadState m s | m -> s where

get :: m s

put :: s -> m ()

modify :: (s -> s) -> m s

(The “|m -> s” part of this class is called a functional dependency. You can ignore this.
If you want to know exactly what it does, then you should follow the Advanced Func-
tional Programming course during your Master’s. The short answer is that it helps the
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compiler figure out which particular state monad instance it needs to use for a given
type.)

Apart from the usual three monad laws, state monads should also satisfy:

put s1 >> put s2 == put s2
put s >> get == put s >> return s

get >>= put == return ()

get >>= (\s -> get >>= k s) == get >>= (\s -> k s s)

Check to see if you understand what these four laws say and if they make sense.

Exercise 3.5.8. Give default implementations of get and put in terms of modify, and a
default implementation of modify in terms of get and put.

Instrumentation

We are now going to define our own, slightly modified state monad that, besides keep-
ing track of a piece of state, has also been instrumented to count the number of (>>=),
return, get and put operations that have been performed during a monadic computa-
tion.

The counts are given by the type:

data Counts == Counts {
binds :: Int,

returns :: Int,

gets :: Int,

puts :: Int

}

Exercise 3.5.9. As a convenience, give a Monoid instance for Count that sums the counts
pairwise. Define constants oneBind, oneReturn, oneGet, onePut :: Counts that repre-
sent a count of one (>>=), return, get and put operation, respectively.

Our state transformer is now given by:

newtype State’ s a == State’ {runState’ :: (s, Counts) -> (a, s, Counts)}

Note that our State’ corresponds to Hutton’s ST, but that it has been parameterized
over the type of state s (for which Hutton used the type synonym State). Additionally,
we keep track of the Counts as an internal piece of state that is not exposed through the
get and put interface.

Exercise 3.5.10. Give Monad and MonadState instances for State’ that count the number
of (>>=), return, get and put operations.
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Tree labeling

Here is another tree data type:

data Tree a == Branch (Tree a) a (Tree a) | Leaf

This is a binary tree that stores values on the internal nodes only.

Exercise 3.5.11. Write a function label :: MonadState m Int=>Tree a->m (Tree (Int, a))

that labels a tree with integers increasingly, using a depth-first in-order traversal.

Exercise 3.5.12. Write a function run :: State’ s a -> s -> (a, Counts) that runs a
state monadic computation in the instrumented state monad, given some initial state of
type s, and returns the computed value and the number of operations counted.

For example, the expression

let tree == Branch (Branch Leaf "B" Leaf) "A" Leaf

in run (label tree) 42

should evaluate to

(Branch (Branch Leaf (42, "B") Leaf) (43, "A") Leaf

, Counts {binds == 10, returns == 5, gets == 4, puts == 2})

3.5.3 Further reading

If you want a bit more practice with implementing functions in the IO monad, then try
implementing the Mastermind game.

If you want to know more about the probability monad then have look at “Probabilistic
Functional Programming in Haskell”, Martin Erwig and Steve Kollmansberger, Journal
of Functional Programming, Vol. 16, No. 1, pp. 21–34, 2006.

3.6 Database (∗∗)

This assignment deals with (a subset of) SQL, the structural query language for dealing
with data in relational databases. As often, Wikipedia has a good summary on the
history and the look of the language.

In current database systems, SQL is used not only to describe queries, but also to de-
scribe the format of tables and their contents. In this assignment, we implement a very
simple database system entirely in Haskell, and develop a small SQL parser together
with an interpreter so that we can describe data for that database and run queries. It is
not an assignment that teaches you how to interface to a real database system.
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For this task, you are supposed to parser combinators in order to write the parser. You
can use any parser combinator library you like.

Structure

This assignment consists of several parts: You have to devise the abstract syntax of a
fragment of the SQL grammar, to write a parser using the parser combinators. Further-
more, you have to implement the database system, and you have to write functions that
interpret the SQL abstract syntax in terms of actions on the database system.

It is important to realize that there is not just one order in which you can approach this
task. The representation of the database itself in terms of Haskell datatypes is given.
Hence, you can start implementing database operations in Haskell and later write the
parser and the semantics functions. Or, you can start with the parser, then write the
semantic functions and implement the database in the end.

You can even decide to mix the approaches, and first implement some language con-
structs completely, and then move on to the next. Do whatever you feel works best,
and if you get stuck somewhere, try if you can make progress in another area.

SQL grammar

The fragment of SQL we consider is given by the following grammar:

program ::= tablecommand∗ query
tablecommand ::= create | insert
create ::= CREATE TABLE name ( names? )

insert ::= INSERT INTO name insertion
insertion ::= VALUES ( entries? )

| query
query ::= SELECT names FROM names wherepart?
wherepart ::= WHERE expression
expression ::= expression AND expression

| expression OR expression
| NOT expression
| ( expression )

| operand operator operand
names ::= name,names | name
entries ::= entry, entries | entry
entry ::= string | number
operand ::= name | entry
operator ::= < | > | =

88



3.6 Database (∗∗)

Terminals are written in typewriter font, nonterminals in italics. Between any two sym-
bols (terminals or nonterminal) in the above rules, arbitrary amounts of whitespace are
allowed.

In addition, there are the following nonterminals for the lexical syntax – no whitespace
is allowed anywhere in these rules:

name ::= letter alphanum∗

string ::= ’ char∗ ’

number ::= digit digit∗

alphanum ::= letter | digit
letter ::= any letter
digit ::= any digit
char ::= any character except the single quote ’

Exercise 3.6.1. Define Haskell datatypes to describe the abstract syntax of SQL. First
apply the general strategy to come up with a first version, but then reflect and consider
if you cannot optimize a bit by introducing lists and occurrences of Maybe. Call the
datatype for the starting nonterminal program Program.

Hint: if you want to split the syntax into smaller chunks, then omit wherepart and
expression for the beginning.

Exercise 3.6.2. The fact that whitespace can occur almost everywhere within an SQL
statement makes the definition of parsers slightly trickier than usual. Nevertheless, we
can define our parser in a single step, without the need for a separate lexical analyzer.
The idea is to make most of the parsers consume additional spaces at the end of the
input.

Define a parser

spaces :: Parser String

that greedily parses as much whitespace as possible (use the isSpace function from
module Data.Char). You can use the declaration

import Data.Char

in the beginning of your program in order to import a module.

Then, use this parser to define parsers

keyword :: String -> Parser String

parens :: Parser a -> Parser a

commas :: Parser a -> Parser [a]

These are variants of token, parenthesised and listOf from ParseLib, but allow
whitespace after each token.
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Example:

parens (keyword "SELECT") "( SELECT ) "

should successfully parse the string "SELECT", but

parens (keyword "SELECT") "(SEL ECT)"

and

parens (keyowrd "SELECT") " (SELECT)"

should fail (i.e., drop the spaces in while error-correcting, because no spaces are allowed
in the middle of a keyword, or in the beginning).

Exercise 3.6.3 (medium). The grammar, as given, is ambiguous (and left-recursive) for
expressions. Remove the ambiguity and left recursion by assuming that NOT, AND, and
OR have the usual priorities. Allow parentheses to be used to explicitly group expres-
sions. Note that you do not have to reflect this in the abstract syntax (i.e., the Haskell
datatypes), but you have to use the transformed grammar in order to define the parser.

Exercise 3.6.4 (medium). Define a parser

parseProgram :: Parser Program

that can parse an SQL program. Define all the other parsers for the other nonterminals.
Make use of the combinators defined above, and define more if required. The guideline
should always be that every parser consumes additional spaces in the end, but not at
the beginning. Only the parser for the complete program parseProgram should also
allow spaces at the beginning.

You can test your parser on some simple SQL programs, for instance

INSERT INTO foo VALUES (2, 3, 4)

SELECT name, location FROM addresses

Note that you can, for debugging purposes, also test individual parsers you define. In
fact, try to verify every parser you define on a few examples.

Database implementation

We are going to implement our database directly in Haskell in a very straightforward
way, with a focus on simplicity rather than efficiency. We model the entire database as a
finite map. In order to get finite maps into your program, you should add the following
import statements to the module header of your solution:

import qualified Data.Map as M

import Data.Map (Map (. .))
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Now, the database maps table names to tables:

type DB == Map TName Table

type TName == String

A table contains the names of its columns, plus a list of rows that are the entries in the
table.

data Table == Table Columns [Row]

deriving Show

type Columns == [Name]

type Name == String

type Row == [Entry]

As entries, we allow either strings or integers. We use the deriving construct to derive
functions not only to show entries, but also to compare them.

data Entry == String String | Int Int

deriving (Show, Eq, Ord)

(Note that we are introducing constructors String and Int, each parameterized with
one argument of the indicated type.)

A simple table that associates course abbreviations and years with the name of the
lecturers can be represented as follows:

exampleTable :: Table

exampleTable ==

Table

["course", "year", "lecturer"]

[[String "INFOAFP", Int 2007, String "Andres Loeh"],

[String "INFOAFP", Int 2006, String "Bastiaan Heeren"],

[String "INFOFPLC", Int 2008, String "Andres Loeh"],

[String "INFOSWE", Int 2008, String "Jurriaan Hage"]]

Operations on the database can be modelled using a state monad:

type DBM == State DB

For this to work, you have to

import Control.Monad.State

This module contains the definition we discussed in the course:

newtype State s a == State (s -> (a, s))

and defines functions

91



3 Larger programming tasks

runState :: State s a -> s -> (a, s)

put :: s -> State s ()

get :: State s s

as discussed. In addition, it also defines a function

modify :: (s -> s) -> State s ()

modify f ==

do

s <- get

put (f s)

that modifies the state according to the function given.

Exercise 3.6.5. Define a function

printTable :: Table -> String

that turns a table into a readable string. Print the column headers, a line of horizontal
dashes, and then all the rows. The column entries should be aligned, and sufficient
room should be reserved for each column to hold the widest entry that occurs in that
column.

Example:

putStrLn (printTable exampleTable)

should return something like the following output:

course year lecturer

----------------------------------

’INFOAFP’ 2007 ’Andres Loeh’

’INFOAFP’ 2006 ’Bastiaan Heeren’

’INFOFPLC’ 2008 ’Andres Loeh’

’INFOSWE’ 2008 ’Jurriaan Hage’

Exercise 3.6.6. Define a function

createTable :: TName -> Columns -> DBM ()

that, given the name of a table and column names, adds a new empty table with these
column names.

Exercise 3.6.7. Define a function

insertInto :: TName -> Row -> DBM ()

that inserts a new row into a table. The function should check that the number of entries
in the row matches the number of columns in the table and do nothing if the numbers
don’t match.
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Exercise 3.6.8 (medium). Define functions

select :: Table -> RowProperty -> Table

project :: Table -> Columns -> Table

pair :: Table -> Table -> Table

where

type RowProperty == Row -> Bool

The function select should keep only the rows from a table that have the given prop-
erty.

The function project should keep only the columns from the table that are given, in
that order. If columns are given that don’t exist in the table, then those should be ig-
nored.

The function pair should compute that cartesian product of two tables. The resulting
table has all the columns of the first table, followed by all the columns from the second
table. The rows are all combinations of rows from the first and rows from the second
table. In particular, if the first table has c1 columns and r1 rows, and the second table
has c2 columns and r2 rows, then the resulting table has c1 + c2 columns and r1 · r2 rows.

Exercise 3.6.9 (difficult). Define a function

iExpression :: Expression -> [Name] -> RowProperty

that – assuming that Expression is the datatype used to represent nonterminal expres-
sion – interprets an expression as a row property. The additional argument of type
[Name] indicates the column names of the table the property is operating on.

To understand how this works, let’s look at the grammar for expressions. An expression
is essentially a conjunction or disjunction of conditions, where each condition is some
form of comparison between operands. Operands can either be constants or (column)
names.

Assuming you have defined

data Operand == Entry Entry | Name Name

deriving Show

you can define a helper function

iOperand :: Operand -> [Name] -> (Row -> Entry)

iOperand (Entry e) ns r == e

iOperand (Name n) ns r == r !! (fromJust (findIndex (==n) ns))

that interprets an operand correctly as either a constant value or looking up the ap-
propriately named column from the given row. The function iOperand uses fromJust
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from the Data.Maybe module and hence will fail if an “unknown” column name is
mentioned, but we will leave this for a bonus exercise to fix.

Using iOperand, you can now define iExpression.

Exercise 3.6.10 (medium). Define a function

iQuery :: Query -> DBM Table

that – assuming Query represents the nonterminal query – interprets a query as an op-
eration on the database that returns a new table. The strategy is as follows: lookup all
the tables mentioned in the FROM part and compute their product (using pair). Then
use the columns of the product table to turn the WHERE part into a row property using
iExpression. Use select to apply the row property to all the rows of the product table,
and finally project to keep the columns specified in the SELECT part of the query.

Exercise 3.6.11. Write a function

iTableCommand :: TableCommand -> DBM ()

that – assuming that TableCommand is the datatype for the nonterminal tablecommand –
interprets an insert or create command as a database operation. Since an insert com-
mand can contain a query, you will have to use iQuery to define iTableCommand.

Exercise 3.6.12. Write a function

iProgram :: Program -> DBM Table

that interprets an entire SQL program and returns the table delivered by the final query.

Exercise 3.6.13. Write a

main :: IO ()

that uses the function

getArgs :: IO [String]

from the module System.Environment in order to check the command line arguments
of the program. The argument should be interpreted as a filename, the file read using

readFile :: String -> IO String

and the contents of the file should be interpreted as a program using parseProgram and
iProgram. After that, the program should print the resulting table using printTable.

As a final example, here is a possible input file:
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CREATE TABLE courses (course, year, lecturer)

INSERT INTO courses VALUES (’INFOAFP’, 2007, ’Andres Loeh’)

INSERT INTO courses VALUES (’INFOAFP’, 2006, ’Bastiaan Heeren’)

INSERT INTO courses VALUES (’INFOFPLC’, 2008, ’Andres Loeh’)

INSERT INTO courses VALUES (’INFOSWE’, 2008, ’Jurriaan Hage’)

CREATE TABLE topics (subject, topic)

INSERT INTO topics VALUES (’INFOAFP’, ’monad transformers’)

INSERT INTO topics VALUES (’INFOFPLC’, ’Haskell’)

INSERT INTO topics VALUES (’INFOFPLC’, ’parser combinators’)

INSERT INTO topics VALUES (’INFOSWE’, ’version management’)

INSERT INTO topics VALUES (’INFOSWE’, ’deployment’)

SELECT lecturer, topic FROM courses, topics WHERE course = subject

and the output:

lecturer topic

---------------------------------------

’Jurriaan Hage’ ’deployment’

’Jurriaan Hage’ ’version management’

’Andres Loeh’ ’parser combinators’

’Andres Loeh’ ’Haskell’

’Bastiaan Heeren’ ’monad transformers’

’Andres Loeh’ ’monad transformers’

Extra exercise for LC-only students

Exercise 3.6.14 (medium). Define the algebra and fold function for your abstract syntax.
Reexpress all the interpretation functions as a fold.

Bonus exercises

Exercise 3.6.15 (bonus). Write a little interactive loop that reads SQL table commands or
queries from the command line and interprets them. For table commands, just update
the state. For queries, print the result. Update your main function to use the interactive
loop if no filename is specified as a command line argument.

Exercise 3.6.16 (bonus, medium). Add the possibility to save the current database to a
file and read it from a file. This requires you to devise a good storage format for the
database and be able to read that format again. An option is to use the standard Read

and Show functions Haskell provides.

Exercise 3.6.17 (bonus, variable). Make the program more robust by checking against
all sorts of incorrect inputs (such as mentioning column names that don’t exist) and
giving meaningful errors in such a case.
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Exercise 3.6.18 (bonus, variable). Add more features of SQL to the query language. An
easy extension is to allow renaming of columns with AS in a SELECT statement, or to
allow selecting all columns using ALL. Look for SQL descriptions to get more ideas for
additional commands.

3.7 TurtleGraphics (∗∗)

The topic of this task is to write a simple interpreter for a simple version of the Logo
programming language. More information about Logo can for instance be found in the
Wikipedia article at

http://en.wikipedia.org/wiki/Logo_(programming_language)

The focus of this assignment is the use of IO in Haskell. Parts of the assignment deal
with reading a file and drawing in a window.

Logo

The Logo language is a very simple language to control a turtle (that happens to carry
a pen around). The turtle begins in one particular position (say, in the middle of a
window), facing in one particular direction.

You can now give commands to the turtle, of the following form:

Command Effect

forward <num> The turtle steps forward by num steps. If the turtle
is currently drawing, then a line is drawn along the
turtle’s path.

back <num> The turtle steps back by num steps. If the turtle is cur-
rently drawing, then a line is drawn along the turtle’s
path.

right <angle> The turtle turns right (i.e., clockwise) by angle de-
grees.

left <angle> The turtle turns left (i.e., counterclockwise) by angle

degrees.
penup Stop drawing.
pendown Start drawing.

Here is an example:

forward 50

right 90
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forward 50

right 90

penup

forward 25

pendown

forward 25

right 90

forward 50

The result should look approximately as follows:

The task

The program should read a Logo program from disk, open a window and paint the
results of the program in the window. Finally, the program should wait for a keypress
before the window is closed again.

For drawing the resulting picture, we are using the SOE graphics library, an extremely
simple (and not very powerful) graphics interface originating from the Haskell book
called “The Haskell School of Expression” by Paul Hudak – hence the name SOE. There
are several implementations of that library. The most easiest to install should be within
the HGL library (which is available via cabal install from Hackage, but should be
installed on the Linux lab machines already).

Depending on the library you choose, you have to import a module. If you want to use
the HGL variant, simply place the line

import Graphics.SOE

in your module header.

The functions you need will be mentioned in the exercises. Note nevertheless that you
can use the GHCi commands :browse to browse all definitions in a module, and :info

and :type to get information and types of identifiers.
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Steps

Exercise 3.7.1. Write a datatype Command that represents a single Logo command. I.e.,
define one constructor per command.

Exercise 3.7.2. Write a parser that turns a string into a list of commands:

parseLogo :: String -> [Command]

It is possible to do this using parser combinators, but the Logo language is so simple
that this is not really needed. You can use lines to split text into lines, words to split a
line into multiple words at blanks, and then read where appropriate to convert strings
into numbers.

The function may just fail if the string contains an illegal Logo program.

Exercise 3.7.3. Now, write a function that takes a filename, reads the file and then parses
it:

getLogo :: FilePath -> IO [Command]

Note that the following type synonym is predefined in the prelude:

type FilePath == String

Exercise 3.7.4. Define a type that represents the state of the turtle. Depending on your
preference, this can be a type synonym, thus

type TurtleState == ...

or a datatype

data TurtleState == ...

The state has three components: the current position, the current angle where the turtle
is facing, and whether the turtle is currently drawing or not.

Exercise 3.7.5. Define the initial state of the turtle. Let’s code the window size as a
constant for the moment, for instance

windowSize :: Size

windowSize == (600, 600)

The type synonym Size is defined by the SOE library as follows:

type Size == (Int, Int)

The turtle should initially be in the middle of the window, face up and be drawing.

initialState :: TurtleState

98



3.7 TurtleGraphics (∗∗)

Exercise 3.7.6. Write a function that executes a single command and transforms the
state. There are different ways of sophistication in which this can be achieved. The
simplest approach is probably to directly draw in the window using the

drawInWindow :: Window -> Graphic -> IO ()

function. You then define

processCommand :: Window -> Command -> TurtleState -> IO TurtleState

that receives the window, the command, and the original state as arguments.

An alternative that is somewhat nicer is not to draw immediately, but to accumulate a
Graphic that can be drawn later. This has the advantage that processCommand does not
use IO and does not need the current window as a parameter.

processCommand :: Command -> TurtleState -> (Graphic, TurtleState)

Now, if you are already familiar with the state monad, this is just an instance of it. So
yet another option is to use the type:

processCommand :: Command -> State TurtleState Graphic

Choose whatever you like best or find easiest. Use the following functions from the
SOE library

line :: Point -> Point -> Graphic

withColor :: Color -> Graphic -> Graphic

Note that you will have to calculate the new position from the old position using sin

and cos, and that you will have to convert angles, because the left and right com-
mands are parameterized by degrees (between 0 and 360) whereas sin and cos expect
radians (between 0 and 2π). The constant π is available as pi in Haskell.

Exercise 3.7.7. Try to define a function that processes multiple commands. The type of
this function depends on the type that you have chosen for processCommand, but it will
be something like

processCommands :: ...[Command] ... -> ...

i.e., there should be a list of commands among the inputs.

If you do not draw directly into the window, but assemble values of type Graphic, you
may find the function

overGraphics :: [Graphic] -> Graphic

useful that simply combines different graphics (in this case, lines) into a single graphic.
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Exercise 3.7.8. Write a function that takes a list of commands, opens a window, pro-
cesses the commands given the initial state, waits for a keypress, then closes the win-
dow. Here is a template for the function:

runLogo :: [Command] -> IO ()

runLogo cmds == runGraphics $
do

w <- openWindow "Logo" (600, 600)

... processCommands ... cmds ... initialState ...

...

getKey w

closeWindow w

How to invoke processCommands depends on the type. If processCommands does not
draw directly, you have to extract the resulting Graphic and draw it using drawInWindow.

Exercise 3.7.9. Now, combine everything with the parser. Write

runFile :: FilePath -> IO ()

that reads the file using getLogo and subsequently invokes runLogo.

Exercise 3.7.10. We are done. A final option is to create a proper main function that uses
the command line argument as file name.

main == do

args <- getArgs

runFile (head args)

This will fail if there are no command line arguments. Note that getArgs is not defined
in the prelude, but requires you to

import System.Environment

at the top of your module.

Bonus exercises

There are lots of extensions possible for our little language. However, keep in minds
that the possibilities of the SOE library are quite limited, and many more advanced
graphical features may require switching to a different graphics library.

Exercise 3.7.11 (bonus). Add a possibility to draw in different colors.

Exercise 3.7.12 (bonus, medium). Create a possibility to save the current state and re-
turn to it later, in a nested, stack-like way, using commands push and pop.
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Exercise 3.7.13 (bonus, medium). Add loop constructs such that for example

repeat 4

forward 50

right 90

end

draws a square. The main difficulty here is that parsing becomes less straight-forward.
Note that you can also only implement everything but the parsing, starting from ex-
tending the Command datatype. Logo programs are rather simple to write in Haskell.

Exercise 3.7.14 (bonus, medium). Taking the hint from the previous exercise, devise a
nice embedded domain-specific language in Haskell in order to create values of type
[Command].

Exercise 3.7.15 (bonus, difficult). Extend the Logo language with variables.

Any other ideas are also fine. Use your imagination.

3.8 Stereograms (∗∗)

The topic of this assignment are single-image random dot stereograms (SIRDS for short).
SIRDS are images that contain a “hidden” three-dimensional structure. There is lots of
information about SIRDS on the web, including techniques on how to see the hidden
images and many examples. See for instance Wikipedia at

http://en.wikipedia.org/wiki/SIRDS

for a relatively detailed explanation including lots of links to more information. Fig-
ure ?? shows an example SIRDS in black and white that contains a chessboard pattern
similar to that in Figure 3.1. Note that stereograms are sensitive to the resolution, so
you have to print the stereogram without scaling, or – if you want to watch it on screen
– have to view the file at 100% and with any visual modifications (such as antialiasing)
turned off.

There are many variations on the stereogram idea. There are images consisting of just
random dots, but also artful pictures where even the two-dimensional variant is a joy
to look at. There are images which encode several three-dimensional pictures when
looked at in different ways, and there are animated stereograms as well.

In this task, we will concentrate on a really simple algorithm that produces pictures
composed of pixels of more or less random colors – in other words, the two-dimensional
pictures just look like (somewhat repetitive) noise.

The task consists of the following components:
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• Writing a routine to output images.

• Defining a data structure that can maintain ‘links’ between pixels.

• Defining an algorithm that can compute a SIRDS from a depthmap.

Additionally, an algorithm that can (partially) reconstruct the depthmap from a SIRDS
to help debugging.

Images

The first part of the task is to write code that can write images to disk, so that you can
view them using an image viewer. We are going to use the PPM format to write images,
because it is one of the simplest image formats available. Lots of converters exist than
can automatically translate PPM files into more common graphics formats (such as for
instance PNG) for you.

If for some reason, you cannot find such a conversion program or viewer for PPM,
I recommend that you try to implement a writer for BMP instead, which is another
really simple image format, but not quite as simple as PPM.

In essence, each PPM file consists of a header followed by the image data. The header
identifies the file as a PPM file, contains the resolution and the color depth of the image.
The data is an encoding of each pixel in the image, line by line.

In Haskell, we represent a single pixel by its RGB color, i.e., its red, green and blue color
components, where each component ranges from 0 to 255:

type Color == Int

data RGB == RGB Color Color Color

Note that we use RGB both as name of the datatype and as name of the single con-
structor. Such double use is allowed by Haskell and quite common. Nevertheless, the
constructor RGB is a function, whereas the datatype RGB is a type. Both exist in parallel.

An image is then a list (rows) of a list (columns) of RGB colors where all rows have
equally many columns:

type Image == [[RGB]]

Exercise 3.8.1. Write functions

validColor :: Color -> Bool

validRGB :: RGB -> Bool

that check if a given color or RGB value is valid, i.e., if all colors involved are integers
in the correct range.
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Exercise 3.8.2 (medium). Write a function

validImage :: Image -> Maybe (Int, Int)

that tests if an image is valid and, if it is, returns the resolution of the picture as a pair
of the x-resolution and the y-resolution. An image is valid if all its pixels are valid and
if all the rows have equally many columns. All these properties should be checked, and
Nothing should be returned for all invalid images. Example:

*Main> validImage []

Just (0, 0)

*Main> let p == RGB 0 0 0; r == [p, p, p] in validImage [r, r, r, r]

Just (3, 4)

*Main> let p == RGB 0 0 0; r == [p, p, p] in validImage [r, r, r, [p]]

Nothing

*Main> validImage [[RGB 1 2 257]]

Nothing

Exercise 3.8.3. The next step is to generate the PPM header for an image. For this, you
have to define a function

ppmHeader :: (Int, Int) -> String

The header consists of four components. The components are separated by a space,
the whole header is terminated by a newline. The first component is always the string
"P6" that is an identification for the PPM file format. The second and third components
are the x- and y-resolution of the image, respectively – they are therefore passed as
parameter of ppmHeader. The final component gives the maximum color value we are
using. For the purposes of this assignment, all our images will use colors from 0 to 255,
so the final component is the constant string "255". Hint: Recall that you can use show

to turn an integer into its string representation. Example:

*Main> ppmHeader (1024, 768)

"P6 1024 768 255\n"

Exercise 3.8.4. Of course, we must also encode the image data. Therefore, define func-
tions

encodeRGB :: RGB -> String

ppmData :: Image -> String

The former encodes a single pixel, the latter encodes a whole image by encoding all
the pixels in order and concatenating the encodings (without any spaces or newlines).
How is a pixel encoded? For each RGB-value, we generate a string of length 3 with one
character for each component. We encode each component by using the character with
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the corresponding ASCII code. For this, there is a function chr :: Int -> Char (defined
in the module Data.Char. Example:

*Main> encodeRGB (RGB 65 66 67)

"ABC"

*Main> ppmData [[RGB 65 66 67, RGB 68 69 70], [RGB 71 72 73, RGB 74 75 76]]

"ABCDEFGHIJKL"

Note that some ASCII code correspond to non-printable characters that will be escaped
if shown by the interpreter:

*Main> encodeRGB (RGB 0 1 2)

"\NUL\SOH\STX"

Exercise 3.8.5 (medium). We can now define a function that writes a PPM image to a
file:

writePPM :: FilePath -> Image -> IO ()

Here, FilePath is an abbreviation for a string

type FilePath == String

You will have to use most of the functions defined so far. The function should test the
given image for validity. If the image isn’t valid, it should write an error message to
the screen. If it is valid, however, it should write the PPM encoding of the image (the
header concatenated with the data) to the specified file. To write a file, use the function

writeBinaryFile :: FilePath -> String -> IO ()

that is predefined in the program skeleton.

Exercise 3.8.6. Verify that your PPM writer works. In the skeleton, there are predefined
images chess, gradient and circular that you can write to files of your choice using
writePPM. Do so, then use a converter/viewer to display the files on screen and check
that they look as expected (i.e., as in Figures 3.1–3.3.

Links

The basic idea of the SIRDS generation algorithm is that one pixel in the imaginary
three-dimensional target landscape is mapped to two pixels – one for each eye – in the
stereogram. To make it possible for the eyes to match up these corresponding pixels,
such pixels should have the same color. The SIRDS generation algorithm determines
which pixels should be ‘linked’ in this way. Let us call the distance between two linked
points the ‘length’ of that link. A point in the three-dimensional space that is close to
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Figure 3.1: chessboard Figure 3.2: linear gradient Figure 3.3: circular gradient

the observer leads to a short link, whereas a point that is further away leads to a long
link. The idea is shown in Figure 3.4.

A pixel can be linked to the left and to the right at the same time. The left and right eye
then perceive that pixel as different points in the three-dimensional space.

Things in the foreground tend to be perceived slightly larger than things in the back-
ground – therefore, points in the three-dimensional space that are further away are
sometimes obscured (shadowed) by other points. In practice, this means that links can
collide. Several three-dimensional points might be linked to the same two-dimensional
positions. In this case, shorter links (corresponding to closer points) win over longer
links.

Exercise 3.8.7. Let us introduce types to represent the links we are interested in. A
point (we are only interested in x-coordinates here, therefore points are represented as
integers for now) can either be linked with another point, or unlinked:

data Link == Linked Int Int | Unlinked Int

We maintain the invariant that for the Linked constructor, the first point is always
smaller than (i.e., to the left of) the second point. We also call the first point the left
point, and the second the right point. Here is a function that tests the invariant:

validLink :: Link -> Bool

validLink (Linked x y) == x < y

validLink (Unlinked _) == True

Because – as argued above – shorter links shadow longer links, define an operator

(>%>) :: Link -> Link -> Bool

(read as ‘better’). A link is better than another if it is strictly shorter than the other.
A Linked link is always better than an Unlinked point. You can choose any result for
comparing two Unlinked points – it does not matter for the stereogram algorithm.

Exercise 3.8.8 (medium). Next, we will implement a data structure that maintains all
the links we discover. We use so-called finite maps for this purpose. Finite maps are
defined in the module Data.Map. For instance, the type
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Map Int Char

is a finite map from integers to characters, and can contain a finite number of associ-
ations between integers and characters. The first type is also called the key type, the
second the element type. Keys of type integer can be used to look up characters.

Study the Haddock (a documentation generation tool for Haskell) documentation of
the Data.Map module, available from

http://haskell.org/ghc/docs/latest/html/libraries/containers/Data-Map.html

For the upcoming exercises, you will need to use several functions from this module,
so you should try to understand what the offered methods do and test them in GHCi
on example inputs.

The module has been imported into the skeleton program you are working on using
the statement

import qualified Data.Map as M

This makes all functions from the module available for use in your program and also
in GHCi, but you have to prefix the names with an M – for instance, you have to use
M.lookup rather than lookup. The reason we are doing this is that some functions on
lists have the same names as their finite map counterparts, and we want to be able to
distinguish between the different versions.

Check at least empty, lookup, insert and delete.

Try to understand the types of these functions. Make up example expressions such as

*Main> M.lookup 2 (M.insert 2 5 (M.insert 2 3 M.empty)) :: Maybe Int

*Main> M.lookup 3 (M.delete 3 (M.insert 3 6 M.empty)) :: Maybe Int

until you feel comfortable working with finite maps. In particular, M.lookup is difficult
to understand, because it has a rather general type

M.lookup :: (Ord k, Monad m) => k -> Map k a -> m a

The result type can be delivered in an arbitrary monad, but for our purposes, it will suf-
fice to think of m as Maybe here. To force this instantiation, use explicit type annotations
for the result type like shown in the examples above.

Exercise 3.8.9 (medium). Here is how we store all the links:

type Links == Map (Int, Dir) Int

data Dir == L | R

The name Links abbreviates a finite map. The keys of the map are pairs of an integer
(an x-coordinate) and a direction (L for ‘left’ or R for ‘right’). As explained initially, any
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x-coordinate can be linked to a point on the left and to a point on the right. If x is a
specific point, then (x, R) is the key for the point to the right, and (x, L) is the key for
the point to the left.

An invariant is attached to our use of this data structure: if (x, R) is mapped to a point
x’, then (x’, L) should be mapped back to x, and vice versa.

Write a function

add :: Link -> Links -> Links

that adds a single link to the finite map such that the invariant is maintained (i.e., two
entries have to be added to the finite map). You may assume that no other links with
the same left or right point are in the Links data structure at the time of the insertion.
Adding an Unlinked point should leave the finite map unchanged.

Using the given definition of

noLinks :: Links

noLinks == M.empty

add a few links to an empty finite map in GHCi and verify that your function is work-
ing. Next, write a function

del :: Link -> Links -> Links

that removes a link from the finite map. Removing an Unlinked point should again
leave the finite map unchanged. For a Linked link, you may assume that the link exists
in the finite map. You have to maintain the invariant, though, i.e., you will have to
remove two entries from the finite map. Test this function as well.

Exercise 3.8.10 (medium). Write a function

query :: Link -> Dir -> Links -> Link

to query the data structure of links. A call of the form query (Linked l r) L or
query (Unlinked r) L should check if right point r is already linked with another
left point. I.e., if Linked l’ r is already in the structure, then Linked l’ r should
be returned. If there is no link in the structure that has r as right point, Unlinked r is
returned. Similarly, the calls query (Linked l r) R or query (Unlinked l) R check if
the left point l is already linked with another right point.

Exercise 3.8.11 (difficult). Write a function

link :: Link -> Links -> Links

that adds a link Linked l r to the structure, but only if it’s ‘better’ (according to >%>)
than both the links that are returned by querying for Linked l r in both directions.
If the new link is indeed better, then first the old links should be removed using del,
and finally the new link should be added using add. If the new link is not better or
if the new link is Unlinked, then the Links data structure should be returned without
modification.
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Stereogram generation

d

ze

Figure 3.4: The idea of SIRDS generation

We are now at a point where we can actually implement the generation of a SIRDS
relatively easily. The input to the algorithm is a heightmap:

type HeightMap == [[Height]]

type Height == Double

This is a list (lines) of lists (columns) of z-coordinates of the same size than the intended
resulting image. Each of the heights is supposed to be between 0.0 and 1.0 for optimal
viewing results.

Exercise 3.8.12. Write a function

separation :: Double -> Int

that computes the separation of the two linked points from a given height value. Look
at Figure 3.4. The input of this function is the height z of the 3D-image point from the
base plane of the 3D-image (grey dashed line in the picture). The output is supposed
to be the distance of the two points where the rays from the eyes to that point cross the
plane of the 2D-image.

The separation can be calculated using the following formula:

separation z =
e(d− z)
2d− z

Transcribe this formula to Haskell to define the separation function. The parameters e
(the distance between the eyes) and d (the distance between the eyes and the 2D-image,
which is equal to the distance between the 2D-image and the imaginary base plane of
the 3D-image) are given in the skeleton.

For our purposes, the final result should be an integer, because we want a distance in
pixels. Use the round function to convert a fractional number into an integral number.
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Exercise 3.8.13 (difficult). Write a function that processes a single line of the stereogram
and produces the according links:

sirdsLine :: [Height] -> Links

The length of the original list determines the width of the line, lets call it width. Start
with a structure with no links. For each x-position x, you have to compute the separa-
tion s corresponding to the height at this position, and then link x - (s ‘div‘ 2) with
x - (s ‘div‘ 2) + s using the function link, but only if both points are on the line, i.e.,
at least 0 and at most width - 1. The final structure of links is then returned. Hint: It is
probably easiest to define an additional help function that has extra arguments for the
state you have to maintain, i.e., the width, the current x-position and the current Links
data structure.

Exercise 3.8.14. At this point, you are done, because the remaining functions are all
given. To complete the job, we make use of the function

assign :: Int -> Links -> IO [RGB]

that assigns random colors to a single line (the width of the line is the first argument)
while respecting that linked points should get the same color. Because assign makes
use of random numbers, and random numbers are a side-effect, its result is an IO type.
Assign internally makes use of the function

findRightMost :: Links -> Int -> Int

that, given an x-coordinate x, finds the rightmost x-coordinate that is chain-linked with
x, and that therefore has to be of the same color.

Finally, there is a function

sirds :: HeightMap -> IO Image

that performs the complete conversion from a heightmap into an SIRDS. For each line of
the input, sirdsLine is called to compute all the links. Then assign is called to assign
colors that respect the links. Study the code of these functions and try to understand it.

You can then try to run the main program. Note that the program will run significantly
faster if you compile it with optimizations using ghc -O --make SIRDS.hs.

Decoding stereograms

I’m aware that not everyone can see stereograms, and that non-working stereogram
algorithms can be difficult to debug. I have therefore provided an algorithm that can
recover the heightmap from a SIRDS. This is a lossy operation.

The function is called
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decode :: Image -> Image

and takes an encoded (SIRDS) image as input and produces the decoded variant as a
heightmap in graytones. Areas that cannot be decoded are printed in red. Red areas
will typically appear at the left and right of the whole image, and to the left and right of
high points, because those points shadow lower points that are directly adjacent. Here
is an example, as performed by the default main routine. The doubleChess function
can be transformed into a graytone image using the hightmap function, resulting in the
image shown in Figure 3.5. If encoded as a stereogram via sirds and decoded back
using decode, you will end up with something like Figure 3.6.

Figure 3.5: double chessboard pattern Figure 3.6: en- and decoded pattern

Bonus exercises

Exercise 3.8.15 (bonus, more tricky than difficult). Add a PPM reader, and a converter
from full-color PPMs into heightmaps. Then you can generate your own heightmaps
with a graphics program of your choice.

Exercise 3.8.16 (bonus). Write a command-line interface that reads the input heightmap
and the output PPM as command-line arguments, and then performs the requested
conversion. Look at the System.Environment library for the necessary functions to
access command line arguments.

Exercise 3.8.17 (bonus, difficult). Try to implement an SIRDS algorithm that takes a
pattern as input, and does not just use random dots.

Exercise 3.8.18 (bonus, difficult). Try to make the SIRDS decoding algorithm more in-
telligent, so that it can handle SIRDS that have been generated by other means.

3.9 Arrow (∗∗)

The goal of this assignment is to implement a little domain-specific programming lan-
guage. Programs comprise instructions for a little spaceship called Arrow that flies
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around in bounded two-dimensional space. The space is not empty, but inhabited with
various flying objects such as asteroids, lambdas and debris. By interpreting programs,
we can let Arrow fly through space and perform certain tasks such as finding a way
through an asteroid field and cleaning up debris.

Credits

This assignment is inspired by the Kara programming system:

http://www.swisseduc.ch/compscience/karatojava/kara/

and in particular by Frank Huch’s paper “Learning Programming with Erlang” that
appeared in the proceedings of the 2007 ACP SIGPLAN workshop on Erlang.

Alex and Happy

For this task, you are supposed to use the Alex lexer generator and the Happy parser
generator. These are available from

http://haskell.org/alex/

http://haskell.org/happy/

but they are also part of the Haskell Platform, so if you have that installed, you already
have both Alex and Happy. In particular, you should be able to invoke them from the
command line on the lab machines.

The Arrow programming language

The concrete syntax of the Arrow language is given by the following grammar with
start symbol Program:

Program -> Rule∗

Rule -> Ident -> Cmds .

Cmds -> ε | Cmd (, Cmd)∗

Cmd -> go | take | mark | nothing
| turn Dir

| case Dir of Alts end

| Ident
Dir -> left | right | front
Alts -> ε | Alt (; Alt)∗

Alt -> Pat -> Cmds

Pat -> Empty | Lambda | Debris | Asteroid | Boundary | _

111

http://www.swisseduc.ch/compscience/karatojava/kara/
http://haskell.org/alex/
http://haskell.org/happy/


3 Larger programming tasks

A program is a sequence of rules. Think of rules as procedures. A name is bound to a
sequence of commands. Rules are terminated by a period.

Commands are separated by commas. There is a fixed number of commands. These are
instructions for Arrow. Informally, go means “move in the current direction if possible”,
take means “pick up whatever is here”, mark means “leave a lambda in the current
spot”, nothing means “do nothing”, turn takes a direction and causes Arrow to turn
left or right. The case command takes a direction and performs a sensor reading in
that direction. Depending on what is sensed, different actions may be taken. Finally,
another rule can be invoked by naming it.

In a case construct, multiple alternatives can be provided (separated by semicolons)
that map patterns to rules. Patterns correspond to the things that can be located in a
certain position, and there is a catch-all pattern called _.

Note that unlike in Haskell, case expressions are terminated by an end keyword.

The lexical syntax of a program is described as follows: the program text consists of a
(possibly space-separated) sequence of tokens.

Token -> -> | . | , | go | take | mark | nothing | turn | case | of | end
| left | right | front | ;
| Empty | Lambda | Debris | Asteroid | Boundary | _
| Ident

Ident -> (Letter | Digit | + | -)+

A token is either symbolic, a command keyword, a pattern keyword, or an identifier.
It is implicitly understood that an Ident must not be any of the keyword tokens and
must not be directly followed by another character that could occur in an identifier.

Furthermore, comments may occur in programs between tokens. These are introduced
by -- and extend to the end of the line.

Exercise 3.9.1. Define a suitable abstract syntax for the Arrow language. Call the type
corresponding to a whole program Program.

Exercise 3.9.2. Write a parser for the language using parser combinators.

Exercise 3.9.3 (medium). Define functions to perform analysis of the program that (next
to possibly required additional information) performs the following sanity checks on a
given program:

• There are no calls to undefined rules (rules may be used before they are defined
though).

• There is a rule named start.

• No rule is defined twice.

• There is no possibility for pattern match failure, i.e., all case expressions must
either contain a catch-all pattern _ or contain cases for all five other options.
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Define a function

check :: Program -> Bool

that combines all of the above checks and returns true iff a program is sane.

An interpreter for Arrow programs

Arrow lives on a rectangular board that we call “space” and represent using a finite
map (from module Data.Map):

type Space = Map Pos Contents

type Size = Int

type Pos = (Int, Int)
data Contents= Empty | Lambda | Debris | Asteroid | Boundary

We assume that there always is a rectangular area of positions with non-negative row-
and column-coordinates contained in the finite map, including position (0, 0). We leave
the size of the space open though, and functions can use findMax to find the maximum
key and hence the maximum position in a given space.

We define an input format for spaces where contents are represented by single charac-
ters:

contents character

empty .

lambda \

debris %

asteroid O

boundary #

We specify the format by example:

(7,7)

........

....%...

..%%%%..

....%%%.

...%%%..

....%.%%

....%%%%

........
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The first line contains the maximum valid row-column-coordinate for the board. Here,
we thus have a space with 8 rows and 8 columns. The rows are then specified line by
line, starting with row 0 end ending with row 7. The example space contains a field of
debris, but otherwise just empty space.

A parser for the input format can be written as follows (assuming the uu-parsinglib

library – code can probably be adapted to work with other parser combinator libraries):

parenthesised :: Parser a -> Parser a

parenthesised= pPacked (pSym ’(’) (pSym ’)’)

natural :: Parser Int

natural= read<$> pList1 (pSym (isDigit, "digit", ’0’))
parseSpace :: Parser Space

parseSpace=
do

— read dimensions of the ’Space’
(mr, mc) <- parenthesised ((, )<$> natural<∗ pSym ’,’<∗> natural)<∗ spaces
— read ’mr + 1’ rows of ’mc + 1’ characters
css <- replicateM (mr + 1) (replicateM (mc + 1) contents)

— convert from a list of lists to a finite map representation
return $ fromList $ concat $
zipWith (\r cs -> zipWith (\c d -> ((r, c), d)) [0 . .] cs) [0 . .] css

The function replicateM is defined in Control.Monad, so that module has to be im-
ported. We still need the parser contents that parses a single character and maps it to
the appropriate constructor of type Contents:

contents :: Parser Contents

contents= pAny (\(f, c) -> f<$ pSym c) contentsTable<∗ spaces
contentsTable :: [(Contents, Char)]
contentsTable=
[(Empty, ’.’), (Lambda, ’\\’), (Debris, ’%’), (Asteroid, ’O’), (Boundary, ’#’)]

Exercise 3.9.4. Write a printer for Space that produces the output format just shown.

Exercise 3.9.5. Assuming that Ident is the Haskell type representing an identifier, and
Commands represents a sequence of commands, we represent a program as an environ-
ment during execution:

type Environment= Map Ident Commands

Write a function

toEnvironment :: String -> Environment

that first lexes and then parses a string, checks the resulting Program using check, and,
assuming the check succeeds, translates the Program into an environment.
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Exercise 3.9.6 (medium). During the execution of a program, we have to maintain state.
The state contains the current space, the position of Arrow, its heading, and a stack of
commands.

type Stack = Commands

data ArrowState= ArrowState Space Pos Heading Stack

Implement a function that performs a single execution step:

step :: Environment -> ArrowState -> Step

where Step encodes the possible results of one execution step:

data Step= Done Space Pos Heading

| Ok ArrowState

| Fail String

The function implements the following semantics. The top item on the command stack
is analyzed:

• On go, Arrow moves forward one step using its current heading, as long as the
target field is empty or contains a lambda or debris. Otherwise, it stays where it
is.

• On take, Arrow picks up lambda or debris, leaving an empty space at its current
position.

• On mark, Arrow places a lambda at its current position regardless of what was
there before (debris is removed).

• On nothing, nothing changes.

• On turn, Arrow changes its heading by 90 degrees to the left or right as indicated.
Turning forward is possible, but has no effect.

• On a case, Arrow makes a sensor reading. Depending on the direction specified
as an argument to case, Arrow will take a look at the position that – according to
its current heading – is to the front, left, or right. The pattern of each alternative
is then analyzed in turn until one matching alternative is found. The instructions
on the right hand side are then prepended to the command stack and execution
continues. If no alternative matches, execution fails. An alternative matches if the
pattern corresponds to the contents. Positions that are not stored in the finite map
are implicitly assumed to contain Boundary. A catch-all pattern matches always.

• On a rule call, the code stored with that rule in the environment is prepended to
the command stack. If the rule is not defined, execution fails.

• If the command stack is empty, a Done result is produced.
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Exercise 3.9.7. Rules can be recursive. Note how recursion affects the size of the com-
mand stack during execution. Does it matter whether the recursive call is in the middle
of a command sequence or at the very end of the command sequence? Include your
observations as a comment or in a separate file.

Exercise 3.9.8. Write a driver

interactive :: Environment -> ArrowState -> IO ()

that – given an environment and an initial state – runs the program interactively. In
every step, the driver should print at least the board and ask for some form of user
confirmation. After getting the user input, the driver should invoke the next step and
continue from the beginning. The driver should recognize abnormal and successful
terminations of the reduction and treat them sensibly.

Example: Remove debris

The following example program removes all debris in a connected component of the
space. So, for instance, running this program on the example space shown above with
the ship starting in any position filled with debris should ultimately clear all the debris
in the space, then stop.

start -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right,

s2.

s2 -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right,

s3.

s3 -> take,

case front of

Debris -> go, start, turn right, turn right,
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go, turn right, turn right;

_ -> nothing

end,

turn right,

s4.

s4 -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right.

Adding natural numbers

Here is another example program that adds two natural numbers:

start -> turn right, go, turn left, firstArg.

turnAround -> turn right, turn right.

return -> case front of

Boundary -> nothing;

_ -> go, return

end.

firstArg -> case left of

Lambda -> go, firstArg, mark, go;

_ -> turnAround, return, turn left,

go, go, turn left,

secondArg

end.

secondArg -> case left of

Lambda -> go, secondArg, mark, go;

_ -> turnAround, return, turn left,

go, turn left

end.

The program expects its input as rows of lambdas, as in the following example:

(4,14)
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\\\\\..........

...............

\\\\\\\........

...............

...............

The first number here is 5, the second 7.

If you start arrow facing east in the upper left corner of the space (i.e., at position (0, 0)),
then the result of adding the two numbers is written below the two inputs:

(4,14)

\\\\\..........

...............

\\\\\\\........

...............

\\\\\\\\\\\\...

Bonus exercises

Exercise 3.9.9. Write a proper main program that lets you read in a space and a program
from a file, specify a start position and heading, and runs the interactive driver.

Exercise 3.9.10 (easy to difficult). Extend the interactive driver:

• Print extra information such as the current contents of the stack (set a useful cutoff
limit).

• Allow the user to request multiple steps being performed without asking for con-
firmation.

• Allow going back in the execution.

• Add a full debugger that allows setting breakpoints.

Exercise 3.9.11. Write a non-interactive driver

batch :: Environment -> ArrowState -> (Space, Pos, Heading)

Exercise 3.9.12. Write lots of interesting programs in the Arrow language.

Exercise 3.9.13 (medium). Extend the language such that you can abstract over code
blocks, and rules can have parameters. The example program for removing debris
could be much simplified with this extension.

Exercise 3.9.14 (difficult). Add a graphical driver.
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4.1 MasterMind (*)

The purpose of this assignment is to reimplement the Mastermind game – see the
Wikipedia article at

http://en.wikipedia.org/wiki/Mastermind_%28board_game%29

for more information about the game.

The game is sufficiently small to fit into a single Haskell module, distributed in a file
MasterMind.hs. The file contains a skeleton program: it runs and typechecks, but
doesn’t do anything really useful yet.

Several functions in the program are missing or only partially implemented. The places
where you have to modify or add stuff are marked using calls to the dummy function
tODO. In the final program, you should have replaced all the occurrences of tODO with
meaningful code.

Overview

Mastermind is a game for two players, called the codemaker and the codebreaker. The
codemaker’s role is played by the computer in our case. The codemaker devises a code
made up of four positions, each position being one of six colors (represented by the
numbers 1 to 6). The codebreaker (played by the human user of your program) must
guess the code in as few turns as possible. After each guess, two scores are determined
for the guess. The black score says how many positions of your code match the solution.
Once the black score is 4, the codebreaker has determined the correct code and the game
is over. The white score indicates that a position of the codebreaker’s code used a color
(number) contained in the solution, but in the wrong position. It is easy to see that the
sum of black and white score never exceeds 4, the number of positions in the code.

Here are two protocols of possible games:
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code guess score

3 4 6 6 1 1 2 2 0 black, 0 white
3 4 6 6 3 3 4 4 1 black, 1 white
3 4 6 6 3 5 3 6 2 black, 0 white
3 4 6 6 3 4 6 6 4 black, 0 white

code guess score

5 1 1 4 1 2 3 4 1 black, 1 white
5 1 1 4 1 3 5 6 0 black, 2 white
5 1 1 4 5 2 1 5 2 black, 0 white
5 1 1 4 5 2 4 1 1 black, 2 white
5 1 1 4 5 4 1 1 2 black, 2 white
5 1 1 4 5 1 1 4 4 black, 0 white

And here is how the game looks being played using a Haskell program:

? 2 2 3 3

0 black, 1 white

? 4 4 5 5

0 black, 1 white

? 5 2 1 6

1 black, 3 white

? 5 1 6 2

4 black, 0 white

Congratulations.

The game interactively prompts the user to type in a guess using a ? symbol. The
user types in a whitespace-separated sequence of four numbers between 1 and 6, and
the game responds with the score. If a black score of 4 is reached, the game stops –
otherwise, it asks for another guess.

A bottom-up approach

To solve the problem of implementing the game, we will implement several functions
in an incremental fashion. If all functions are implemented correctly, you should be
able to play the game yourself.

Exercise 4.1.1. Read the skeleton. Compile the skeleton and run it. See what the pro-
gram does (and more importantly, what it doesn’t do). Find all the positions marked
tODO. Apart from the definition of tODO itself, there are seven such positions.

Exercise 4.1.2 (medium). Let us start with the function black. Both a guess and a so-
lution are represented by a list of integers [Int]. We introduce abbreviations Guess

and Solution for this type, so that our type signatures can be more descriptive. Cur-
rently, the function black always returns 0. Redefine the function so that it computes
the black score correctly. Test the function on inputs of your choice – for example, on
the inputs from the game protocols given above:

*Main> black [5,1,1,4] [1,2,3,4]
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1

*Main> black [3,4,6,6] [3,5,3,6]

2

Exercise 4.1.3 (difficult). Note that computing the white score is much more difficult
than computing the black score. Don’t feel forced to do the exercises in this order – if
you get stuck, try the rest first and come back to this exercise later.

Write function white which, given the solution and a guess, computes the white score.
Again, test your function on examples of your choice, for instance

*Main> white [5,1,1,4] [1,2,3,4]

1

*Main> white [3,4,6,6] [3,5,3,6]

0

Exercise 4.1.4. Extend the definition of check such that the third component tests if
the guess was all-correct and the game could be finished. Again, test your function on
inputs of your choice:

*Main> check [5,1,6,2] [5,2,1,6]

(1,3,False)

*Main> check [5,1,6,2] [5,1,6,2]

(4,0,True)

Exercise 4.1.5. The function report takes the result of check and assembles a piece of
text that can be presented to the user. It should indicate the score the user has achived,
and also give a message in the case the game was won. The output doesn’t have to
match the examples here exactly, but should be approximately as follows:

*Main> report (check [5,1,6,2] [5,2,1,6])

"1 black, 3 white"

*Main> report (check [5,1,6,2] [5,1,6,2])

"4 black, 0 white\nCongratulations."

Note that you can use the function putStrLn to print a string on the screen, thereby
interpreting escape sequences such as the newline \n:

*Main> putStrLn it

4 black, 0 white

Congratulations.

Exercise 4.1.6 (medium). The function input has type IO Guess – it should read a
whitespace-separated sequence of numbers from the screen, turn it into a list of inte-
gers, and return that list as a guess. Currently, it reads a line into the string l, but doesn’t
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transform the string, and instead returns the empty list. Fix this problem by using the
prelude function words (check what it does again) and the given function readInt (read
the documentation and test it in the interpreter to see how it works). Finally, test your
function:

*Main> input

? 3 4 5 5

[3,4,5,5]

*Main> input

? 7 hello

[7,-1]

Note that the function currently does not check its input to be valid. The user can place
non-numeric inputs, enter colors that are outside the range from 1 to 6, or specify less
or more than four colors.

Exercise 4.1.7 (medium). Now we can assemble all our work in the function loop. The
function should call check on the input, use report to generate output for the player,
and it should repeat the loop unless the given guess was correct. Once you’ve imple-
mented that function, the game is playable. The main function produces a random code,
and then calls loop with that solution. The function generateSolution that generates
the random code is given in the skeleton, so you can test the function loop by running
main from the interpreter or by compiling your program (see in the beginning) into an
executable and running that.

Bonus exercises

Exercise 4.1.8 (bonus). Implement the function valid that, given a guess as produced
by input, decides if the guess is valid according to the rules of the game. I.e., the guess
should contain width numbers, and the numbers should be between 1 and colors –
we store the game parameters in constants so that they’re easier to parameterize over
at a later point in the development. Then change input such that it calls valid on the
guess before returning it. If the user input isn’t valid, it should complain and ask for
new input rather than returning the invalid guess.

Exercise 4.1.9 (medium, bonus). Improve the game experience: Count the number of
turns the player requires and print it in the end. Allow the user to give up, and in that
case, print what the correct solution would have been.

Exercise 4.1.10 (difficult, bonus). Try to implement an algorithm for playing the game.
Two such algorithms are given on the Wikipedia page. Modify the game so that the
computer plays against itself, and prints the protocol.
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4.2 Lambdarinth (***)

4.2.1 The game

In the beginning, the game to implement will be described. The game, called “Lamb-
darinth”, is – apart from minor variations – an instance of the board game “Ricochet
Robots” (designed by Alex Randolph and published by various companies).

The game is played on a rectangular board (in the original, always 16x16) with an un-
limited number of players (although, for practical reasons, at least one player is good
to have). Between some of the squares and surrounding the whole board are walls. A
number of Lambdas (in the original, always 4) of different colors are placed randomly
on the board.

A problem is then posed to all the players, namely to reach a certain square with a
specific Lambda. In order to solve the problem, any Lambda may be moved both hori-
zontally and vertically, but only until it is blocked either by a wall or another Lambda.
Players should try to get to the target square in as few moves as possible. However,
players can just look at the board, not perform any actual moves (yet). Once they know
a solution, they can shout out the number of moves their solution has. From then on,
there is a timeout of typically 60 seconds. Within this time, other players can announce
that they have also found solutions by shouting other numbers. Players who have
already announced a solution can also improve their solutions by announcing lower
numbers.

After the timeout passes, the winner is determined: The player with the lowest number
who voiced the solution before any other players with the same number first gets the
chance to demonstrate the solution on the board. If the player cannot show a valid
solution (or the solution has too many moves), the player with the next-best solution
gets a chance. If none of the players can demonstrate a solution, the game remains
without a winner.

4.2.2 The task

The overall description of the task is simple. You should implement both a server and a
client for the game just described. All code should be written in Haskell. You may use
libraries and tools that are available on Hackage.

Client and server should communicate with each other via a network socket, on a con-
figurable port, making use of a textual protocol that is specified in Section 4.2.3. The
protocol also makes the basic structure of the game explicit.

In Section 4.2.4, additional requirements for the server and client are specified.

Finally, in Section 4.2.5, a number of ideas for extensions and improvements are given.
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You should try to implement a number of improvements on the initial requirements.
Let your imagination go wild. There are basically no limitations, except that your client
and server should still provide a mode in which they will be interchangeable with other
clients and servers that implement the game protocol.

Demo server

I will try to run a demo server on the host shell.students.cs.uu.nl, port 7890. You
can connect to this server in order to test your own clients. The server should, in prin-
ciple, implement the game and the game protocol as specified in this document, with
the exception of board generation and the rejection of too simple problems as described
in Section 4.2.4. If you think it does not, please let me know. I may update the server
during the block for fixes, improvements or extensions. I will then tell you so. The
server may also be temporarily unavailable if problems show up, so do not rely on its
presence too much. Nevertheless, if you find the server down, let me know so that I
can try to bring it up again.

Since the game protocol is textual, you can also use telnet to connect to the server
and enter commands textually. From a Unix machine within the student network, the
command

telnet shell.students.cs.uu.nl 7890

should connect to the server.

4.2.3 The protocol

Messages sent between the servers and the clients all have a common form. Each mes-
sage is a single line terminated with a period immediately before the end of the line.
The first word in the message identifies the kind of message. We call this word the
command.

Since the protocol might be extended, or because incorrect clients might connect to the
server, the server is required to be very robust. Whenever a message (i.e., input line) is
received that is not in the required format, the message should just be discarded and
not further affect the state of the server.

Clients should also be tolerant and just ignore messages they do not understand.

Clients and server make use of a different set of commands. Here is a list of all server
and client commands that should be understood.

Phases of the game

We can distinguish three phases the server can be in: Before, In, or After a game.
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Before a game the board and the positions of the Lambdas are already known, but not
the problem (i.e., the target square). Players can confirm their interest in playing the
following game in this phase.

After a certain time, or when all players around have confirmed, the game starts. The
confirmed players participate, the others just watch. While In the game, players who
are participating can make a bid by providing a number of moves in which they believe
they can solve the problem. All bids are collected by the server, but bids with fewer
moves are better than bids with more moves. If several bids have the same number
of moves, the one first given counts. If several bids are provided by the same player,
only the lowest counts. The game takes some amount of time. After the first bid, the
remaining time is set to 60 seconds regardless of what it has been before. When this
timeout has passed, the game ends.

After the game the server tries to determine a winner. In the order of the bids received,
it asks the players who submitted the bids to submit a solution. There is a timeout for
that as well. If a player who is asked manages to submit a correct solution in time,
the server announces a winner and moves to the Before phase of the next game. If
no player can submit a correct solution, the server announces that there have been no
winners and also advances to the Before phase of the next game.

Client commands

Confirm Player.

The client confirms that Player wants to participate in the upcoming game. The server
answers with either a NameTaken or an AcceptedPlayer accepted for the same Player
if it is in the Before phase. In other phases, the server will just ignore a Confirm com-
mand. Multiple Confirm commands in the Before phase of a game by a single client
are possible, so a player can choose a new name as long as the game has not started.

Bid Moves.

The client states that it can provide a solution to the given problem in a maximum of
Moves moves. The server ignores this command if it is not in the In phase. In the In
phase, if the bid is currently the best bid of the player in question, the server reacts with
a ReceivedBid command.

Done.

The client states that it has no interest anymore in the current game and would not
mind for it to end. The server ignores this command if it is not in the In phase. If, while
in the In phase, all confirmed players send a Done command, the server can accelerate
the game and immediately switch to the After phase.

Solution Solution.
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The client submits a solution Solution to the current problem. The server ignores this
command if it is not in the After phase and has sent a RequestSolution command for
that player before. The server also ignores the command if the solution submitted is
illegal or has too many moves. If the solution was ok, the server answers with a Winner

command.
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Server commands

Game Board.

The server sends the board and the positions of the Lambdas Board for the next game.
The server sends this command to all clients when it starts a Before phase, or to a new
client when it connects and the server is in the Before or In phase.

NameTaken Player.

The server rejects a Confirm command previously sent to the server. The NameTaken

command indicates that the chosen name Player is already in use by another player. It
should not be sent in any other situation. The server sends this command as a possible
reply to a Confirm command only to the client that sent the Confirm command.

AcceptedPlayer PlayerId Player.

The server announces that a player Player will join the upcoming game. The PlayerId
associated with the player is uniquely determined by the client. The PlayerId can be
used by clients to identify if the player is a new player or has just chosen a new name.
The server sends this command as a possible reaction to a Confirm command to all
connected clients.

PlayerGone Player.

The server announces to all connected clients that a player Player has left the game. The
server uses this command if the connection to the client of a confirmed player has been
lost, regardless of the phase the server is in.

Problem Players Prob Timeout.

The server announces to all connected clients a problem Prob on the current board. It
also gives the Players that will play this game (i.e., that have confirmed before the game
started and not left in the meantime). The Timeout in seconds indicates how much time
there is at most to come up with a bid. After sending this command, the server is in the
In phase.

ReceivedBid Player Moves Timeout.

The server announces to all connected clients that it has received a bid by player Player,
to provide a solution in at most Moves moves. The remaining time in the game in
seconds is indicated by Timeout. The server sends this command as a reaction to a Bid

command, but only if the server is in the In phase, and if the bid it has received is the
best bid the player in question has made in the current game so far.

RequestSolution Player Moves Timeout.
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The server announces to all connected clients that it is waiting for the submission of a
valid solution with maximum number of Moves moves from player Player. It will accept
this solution within Timeout moves. With this command, the server also announces it is
in the After phase. While all players receive this command, only the player mentioned
is requested to submit a solution using the Solution command.

Winner Winner.

The server announces to all connected clients the winner of the current game and the
solution that won, or that there has been no winner. In any case, the Winner command
marks the end of the After phase and the start of a new Before phase. The server will
go on to immediately send a new Board command to all connected clients.

Context-free grammar

In this part, the syntax of the command arguments is specified.

Board ::=Pos Walls Lambdas
Walls ::=[ ] | [ (Wall ,)∗ Wall ]

Wall ::=( Pos , Dir )

Lambdas::=[ ] | [ (Lambda ,)∗ Lambda ]

Lambda ::=( Color , Pos )

Moves ::=Nat

PlayerId::=Nat
Player ::=String
Players ::=[ ] | [ (Player ,)∗ Player ]

Prob ::=Color Pos
Solution::=[ ] | [ (Step ,)∗ Step ]

Step ::=( Color , Dir )

Timeout ::=Nat
Winner ::=None | Player Solution
Color ::=Red | Green | Blue | Yellow

Dir ::=N | E | S | W

Pos ::=( Nat , Nat )

A Board is specified by its size (in the form of a coordinate pair Pos), a list of Walls and
a list of Lambdas. Lists are in Haskell syntax, surrounded by square brackets, the items
separated by commas. Pairs are also in Haskell syntax, surrounded by round brackets
and the two components separated by a comma.

A Wall is a pair of a Pos and a Dir. It indicates that moving from position Pos in direction
Dir is blocked. Note that this allows for boards to have walls that only block movement
in one direction. You may want to prepare your client for that possibility, and have
it show unidirectional walls differently from normal, bidirectional walls. The walls
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surrounding the whole board are implicitly present and may be contained in the list of
walls, but do not have to be.

A Lambda is a pair of a Color and a Pos, indicating that the Lambda of that color is of
that position. In the list of Lambdas, the colors that occur should all be different, but
not all problems have to use all available colors.

A specification of Moves is just a natural number Nat.

A PlayerId is a natural number Nat. Player names Player are given as a String. Finally,
Players are a list of Player.

A Prob is given by a Color followed by a Pos as well, indicating that the Lambda of the
color Color has to be moved to position Pos. Obviously, the server should only pose
problems for a Lambda color that exists on the current board.

A Solution is given by a list of Steps. A Step is a pair of a Color and a Dir. This means
that the Lambda of the appropriate color has to be moved in direction Dir. A solution
is valid if after performing the steps in order, starting from the initial positions of the
Lambdas on the board, the problem is solved, i.e., the Lambda of the specified color
is on the specified square. The length of a solution is given by the length of the list of
steps.

A Timeout is a natural number Nat, specifying how many seconds are left in the game.

For Winner, there are two alternatives. The terminal None indicates that there is no
winner. Otherwise, the winning Player and the winning Solution are given.

All tokens in the above grammar may be separated by spaces (not spread across many
lines though, as each message takes exactly one line).

Lexical syntax

Natural numbers Nat are a non-empty sequence of digits. Strings String are sequences
of characters surrounded by double quotes. In its simplest form, strings may only con-
tain 7-bit ASCII characters and must not contain either backslashes or double quotes.
Haskell-like backslash-escaped characters may be added.

4.2.4 Additional requirements

In this part, several additional requirements of both the client and the server component
are given.
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The client

The server and port the client tries to connect to should be configurable (via command
line, preferably).

The client should keep track of the players currently in the game. This information is
only available by following the announcements of the server in the AcceptedPlayer,
PlayerGone and Problem commands.

During the game, the client should keep track of the bids that have been placed by
the players, by keeping track of the ReceivedBid announcements. At the very least, it
should be obvious to the player at any point of the game who has placed the best bid
so far.

The client should provide a graphical representation of the board. The client should not
rely on the board always having the same, or a specific, size. The client should provide
a way to edit and submit a solution while playing the game, and it should provide a
way to display the winning solution after it has been announced using Winner.

The client should make gaming convenient. Make it easy to place a bid even before
entering a solution. Placing a bid fast is important to win the game, so it should not be
complicated to do so.

Make it easy to pick a name for the player and use the same name later on in subsequent
games.

The server

The server should continuously stick to the Before, In, After loop. It should always
accept new connections, and should handle each connection in its own thread. The
port on which the server listens for incoming connections should be configurable (via
command line, preferably).

The server has a certain amount of flexbility in the generation of timeouts: there should
be a point where a server switches from Before to In phase, even if not all players
currently connected have confirmed. Non-responsive players shouldn’t be able to spoil
the fun for all the others. One option is to have the first Confirm start a timeout of, say,
one minute during which other players can confirm. If all connected players confirm
earlier, the game can start earlier.

Also, the server has to generate a timeout for a game initially. If a puzzle turns out too
hard to solve, or if players all lose interest and quit the game or become non-responsive,
the server should not stay in the game forever (during this time, other newly connected
players will have to wait, after all). The demo server uses 300 seconds for this purpose,
but you can choose another value.

After the first bid – at least in the standard version – the timeout should be reset to 60,
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and even if it previously has been less than 60. From then on, the timeout is unaffected
by further bids.

The server should provide some variation in the boards and the problems. The demo
server currently uses only one board, but many problems on that board. You can start
with that board, which is one of the board game boards – it works well. But try to
also allow a few different boards. Think about the characteristics that make a board
well-suited for the game and explain/motivate your choices.

When generating problems, pay attention to the fact that the problem should be solv-
able. Not all positions on the board may be reachable. In particular, positions too far
away from walls or even corners may be very difficult to reach.

The server should not pose problems that are solvable in less than four moves with a
single robot. The demo server currently does not have this feature.

4.2.5 Potential extensions

Once you have a client and a server that adhere to the minimal requirements above,
you can start implementing extensions. Here are a few ideas, but you should not feel
limited by them.

Exercise 4.2.1. Implement an automatic or semi-automatic client. Either try to write
a fully automatic client that solves problems without user interaction and tries to be
competitive with interactive clients (or ideally is much faster). Alternatively, you can at
least try to solve easy problems automatically, or support the user with hints.

Exercise 4.2.2. Different numbers of Lambdas. Instead of a maximum of four, allow
five, or many more. Vary the number of make it configurable.

Exercise 4.2.3. Allow problems where any Lambda may be moved to the target square.

Exercise 4.2.4. Implement random board generation. Try to generate good boards and
problems that are neither too easy nor too difficult.

Exercise 4.2.5. More board features (really use unidirectional walls, add fields that
change the direction of (some) Lambdas, that shift Lambdas one position to the side,
that teleport robots to some other place etc.).

Exercise 4.2.6. Change the physics (for instance, if a Lambda hits another Lambda, the
impulse from the first carries over to the second).

Exercise 4.2.7. Change the scoring system (for instance, in order to encourage solutions
that use many Lambdas, parallel moves of different Lambdas could just count as a
single move).

Exercise 4.2.8. Implement more variants of the game, or even completely different, but
somewhat similar games. Make the game variant choosable by the clients, or config-
urable when starting the server.
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Exercise 4.2.9. Make the server more verbose and responsive. Instead of just ignoring
commands it does not understand or that come in the wrong phase of the game, it
could respond with appropriate informative messages about what is going on or what
it is expecting.

Exercise 4.2.10. Make it possible for players logged into the game to communicate
(chat) with each other.

Exercise 4.2.11. Allow multiple games on the same server being carried out in parallel
(i.e., have multiple game rooms).

Exercise 4.2.12. Collect statistics about won or lost games in the server and make those
statistics available by querying the server. Player data should be stored in a text file or
a database.

4.3 LambdaRogue (***)

The goal of this assignment is to reimplement a simple “roguelike” game in Haskell.
This specification lists basic requirements as well as ideas for extending the game be-
yond the minimal requirements. Also included are a few tips and tricks for the imple-
mentation.

4.3.1 Demo game

For demonstration purposes I have written a demo game that more or less demon-
strates the requirements from this task description. It is, however, not a reference imple-
mentation. I might extend or change the demo throughout the course and implement
a few additional features myself, so it is probably not a good idea to rely on the demo
too much.

Nevertheless, the demo game may serve to understand the task description better and
to experiment a bit with a small and simple game.

Of course, it is also recommended to try other roguelike games for ideas.

The demo game is available by calling LambdaHack from the command line on the lab
machines.

Here are a few keys you can use in the demo game:
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Figure 4.1: Demo game screen shot

key command

k up
j down
h left
l right
y up-left
u up-right
b down-left
n down-right
< level up
> level down
S save and quit the game
Q quit without saving
o open a door
c close a door
s search for secret doors
. wait
, pick up an object
i show what you are carrying
: look around
v display the version of the game
V toggle field of vision display
O toggle “omniscience”
M display level meta-data
R toggle smell display
T toggle level generation sequence
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Pressing a capital letter corresponding to a direction key will have the character run in
that direction until something interesting occurs.

4.3.2 Dungeon

Dungeon layout

The player should be able to explore a dungeon. The dungeon consists of multiple
levels (at least 10), and each level consists of at least 80 by 21 tiles.1

At least the following tiles should be implemented:

tile type symbol in demo game

floor .

wall (horizontal and vertical) - and |

corridor #

stairs (up and down) < and >

rock invisible

The player is able to move around floors, corridors and stairs, but not through walls or
rock.

The game world should be persistent, i.e., every time a player visits a level during one
game, the level should look the same.2

Level generation

Each level is generated by an algorithm inspired by the original Rogue, as follows:

• The available area is divided into a 3 by 3 grid where each of the 9 grid cells has
approximately the same size.

• In each of the 9 grid cells one room is placed at a random location. The minimum
size of a room is 2 by 2 floor tiles. A room is surrounded by walls, and the walls
still have to fit into the assigned grid cells.

• Rooms that are on horizontally or vertically adjacent grid cells may be connected
by a corridor. Corridors consist of 3 segments of straight lines (either “horizontal,
vertical, horizontal” or “vertical, horizontal, vertical”). They end in openings in

1This minimal size goes back to a standard terminal size of 80 columns and 25 lines. A few of the lines
are used to display status information, the rest is available to display the level.

2This may sound obvious – I’m only saying that because there are roguelike games that don’t allow you
to go back up, or that generate a new random level every time you change levels.
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the walls of the room they connect. It is possible that one or two of the 3 segments
have length 0, such that the resulting corridor is L-shaped or even a single straight
line.

• Corridors are generated randomly in such a way that at least every room on the
grid is connected, and a few more might be. It is not sufficient to always connect
all adjacent rooms.

• Stairs up and down are placed. Stairs are always located in two different ran-
domly chosen rooms.

The algorithm should be written in such a way that it can easily be applied to other
map and grid sizes.

Figure 4.2 visualizes a sample level generation.

Figure 4.2: Level generation in four steps: first (upper left) we have an empty grid; we
then (upper right) generate a room in each cell; then (lower left) corridors
are added; finally (lower right) stairs are placed
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4.3.3 The player

Movement

The player (@ in the demo game) should start the game on the staircase up of the first
dungeon level. The player should be able to move around horizontally, vertically, and
diagonally in the dungeon, and should be able to change levels at staircases.

It should be possible to direct the player using keyboard or mouse. Just for reference,
the demo game uses the Rogue keybindings for player movement, which in turn are
inspired by the editor Vi. The list is given in Section 4.3.1.

Status

Add a status line that displays some current information about the player’s situation in
the game world, such as the current level, or the player’s health.

Vision and memory

Only parts of the game map that the player has already explored should be shown.
Only parts othe the map that the player can currently see should be shown as they
currently are, other parts should be shown as the player remembers. This requires to
implement an algorithm that determines what the player can see. Intuitively, the player
can see a tile in the map if the player has an unobstructed line of sight to that tile.

We first specify fields that are reachable from the player. As input to the algorithm, we
require information about fields that block light. As output, we get information on the
reachability of all fields. We assume that the player is located at position (0, 0), and we
only consider fields (line, row) where line >= 0 and 0 6 row 6 line. This is just about
one eigth of the whole player surroundings, but the other parts can be computed in the
same fashion by mirroring or rotating the given algorithm accordingly.

fov (blocks, maxline)=
shadow :=∅
reachable (0, 0):=True
for l ‘elem‘ [1 . . maxline] do

for r ‘elem‘ [0 . . l] do
reachable (l, r):=(∃α . α ‘elem‘ interval (l, r) && α /∈ shadow)

if blocks (l, r) then
shadow:=shadow∪ interval (l, r)

end if
end for

end for
return reachable
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interval (l, r)= return [angle (l + 0.5, r− 0.5), angle (l− 0.5, r + 0.5)]
angle (l, r) = return atan (r / l)

Figure 4.3: Visualization of the FOV algorithm

Look at Figure 4.3 for visual help. Lines are depicted upwards, rows to the right. The
algorithm traverses the fields line by line, row by row. At every moment, we keep in
shadow the intervals which are in shadow, measured by their angle.

A square is reachable when any point in it is not in shadow – the algorithm is permissive
in this respect. We could also require that a certain fraction of the field is reachable, or a
specific point. Our choice has certain consequences. For instance, a single blocking field
throws a shadow, but the fields immediately behind the blocking field are still visible,
as can be seen from the left example image.

We can compute the interval of angles corresponding to one square field by computing
the angle of the line passing the upper left corner and the angle of the line passing the
lower right corner. This is what interval and angle do.

If a field is blocking, the interval for the square is added to the shadow set.

Optimization Note that you will probably have to optimize the algorithm. For in-
stance, the algorithm expects an argument maxline. Generally, it is possible to stop the
computation once the whole range we consider is in shadow, even before we reach a
given maximum line. Also, it pays off to choose a suitable representation for shadow
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that joins intervals and only remembers the points where light changes to shadow and
shadow changes to light.

Light

Once you can compute the reachable fields using fov, it is possible to compute what the
player can actually see.

Fields adjacent to the player (also diagonally) can always be seen (except for walls, see
below). Fields that have light and are reachable can also be seen. We treat floor of rooms
as having light, whereas corridors and rock are dark.

Light and walls

Walls reflect light. They can be seen only if an adjacent floor field can also be seen. In
particular, walls cannot be seen when passing a corridor on the outside of a room, but
can be seen from the inside of a room.

4.3.4 Saving games

It should be possible to save the game to a file, and restore from there. Everything about
the game should be stored, so that restoring continues in exactly the same situation.

As most roguelikes, you should remove the save game after successfully restoring from
it.

4.3.5 Monsters

The player is not alone in the dungeon. Monsters should roam the game world, too.

Monsters inhabit a specific location on the game map, and can be seen if the field they
are on can be seen by the player. Monsters are not remembered, i.e., they are removed
from the display once the player can no longer see them. 3

Monster generation

Monsters are generated in random time intervals. Of course, monsters should only
be generated on empty squares (no other monsters, no player, no walls, no rock). It

3This would be more confusing than helpful, because monsters can move. An exception might be a
graphical UI where you have a good way to distinguish remembered monsters from seen monsters.
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might also be a good idea never to generate monsters in sight of the player, because the
sudden appearance might be confusing.

Monster movement

Monsters should move. Every monster gets a turn per move of the player. Monster
moves are restricted in the same way as player moves, i.e., they cannot move into ob-
stacles like walls or rock.

You should implement some algorithms that the monsters can use in order to find the
player. Not all monsters have to use the same algorithm, but the following features
should be available for generated monsters to select from.

Random The simplest way to have a monster move is at random.

Sight If a monster can see the player (as an approximation, you can say that this is the
case when the player can see the monster), the monster should move toward the player.

Smell The player leaves a trail when moving toward the dungeon. For a certain times-
pan (100–200 moves), it should be possible for certain monsters to detect that a player
has been at a certain field. Once a monster is following a trail, it should move to the
neighboring field where the player has most recently visited.

Noise The player makes noise. If the distance between the player and the monster is
small enough, the monster can hear the player and moves into the approximate direc-
tion of the player.

More Flesh out the above algorithms. For instance, try to have monsters surround
small obstacles automatically, switch between senses depending on whether a monster
can see, smell or hear the player, or make the random movement less random by rem-
bmering the direction the monster last moved in, and not moving into the opposite
direction during the next move.

Combat

When the player moves into a monster, or a monster moves into the player, combat
occurs. You should invent at least a minimal system that keeps track of each monster’s
and the player’s health. Whenever combat occurs, the attacked party loses some health.

If the player dies, the game ends.
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If a monster dies, it is removed from the map.

Monsters should not normally fight each other (even though in the demo game, they
do).

Messages

Combat requires information to be shown to the user. The player should be informed if
he is attacked or attacking a monster, and what the outcome of the battle is. Make sure
that only information is displayed that is relevant to the player.4

4.3.6 Extensions

Here, a few possibilities to extend the game beyond the minimal requirements are
listed. The more, the better. These are just ideas. Feel free to design your game dif-
ferently or to implement an extension that is not in this list.

Items

Have random items in the dungeon levels (or possibly, even a few non-random items).
Treasure, magic items, weapons or tools are all options. Implement the ability to pickup
or drop items, and keep track of the inventory of items carried by the player.

Allowing to use items in various ways adds a lot of depth to the game.

Can monsters make use of items as well?

Score

Award the player points for things achieved in the game (survival, beating monsters,
reaching new levels, finding treasure, . . . ). Implement a high-score list where the best
scores of each player are stored. Of course, you should ask for the name of the player
at one point.

Typically high-score lists of roguelike games list the cause of death.

Doors and other dungeon features

Add doors that can be open or closed. Doors might also be secret so that you have to
search for them before being able to use them.

4If you share code between monsters and the player, there is a danger that messages for the monster a
displayed as a message to the player.
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Other terrain types are possible in dungeons: you can have (movable) boulders (that
might block sight), water, lave and more . . .

Graphical user interface

There are lots of options in this area. You can go for a tile-based graphical interface that
draws little pictures rather than ASCII graphics. You could even animate the tiles.

You can also go for a first-person 3D interface.

Or you can just spice up the text-based user interface, by adding status information or
displaying messages in message windows.

Proper combat system

Add chance as a factor to combat. Have different monsters and the player do different
amounts of damage, and have a different chance to inflict damage on the opponent. If
you have weapons and armor in the game, make it possible to equip a better weapon in
order to inflict more damage, or to wear a better armor in order to gain more protection
from attacks.

What about ranged combat? You might allow bows and arrows in your game, that can
be shot over a distance. Or you could have dragons that can breathe fire from far away
. . .

Magic effects

Whether magic or not, a lot of effects can be implemented: fireballs or other combat
help, but also the possibility to gain information: find out the complete map, or discover
the whereabouts of items and valuables. Have items that trigger those effects, or allow
the player to cast a limited number of spells in a certain amount of time (i.e., turns).

Larger levels

There is no need to limit the level size to the size of the screen. You can make levels that
are very large, and use scrolling (even in text mode) to show the portion of the level
where the player currently is.
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Improved level generation

Experiment with different level generation algorithms that add dungeon levels with
different characteristics: mazes, caverns, cities, strangely shaped rooms – even wilder-
ness or underwater levels are possible . . .

Food

Have the player need food to survive. Food can be found in the dungeon, or possibly
dead monsters can be eaten. If the player does not get enough food, the player loses
health or simply starves to death.

Speed

Different monsters have different speed, and can thus make moves more often or less
often than the player. The player can speed up and down through items or other means.

Story

A story adds flavour to the game. Have a background story and a goal to achieve.
Add all sorts of tasks and subtasks the player has to solve. Quests may require certain
non-random items or rooms to be placed in the dungeon.

4.3.7 Advice

Keep IO to a minimum

Only put code into the IO monad that really has to be. Separate out the user interface
from the game logic. Many parts of the program need random numbers. Write your
own monad for random numbers if you want an abstraction, but don’t use the IO-
variants of the functions.

Not using IO much also makes your program easier to test.

Find the “right” level of abstraction

Don’t generalize too much in the beginning, because it will slow you down. But also try
to think about possible generalizations and how difficult they would be with your code,
so that you can keep the amount of rewrites needed low. Document design decisions
so that you and your teammates will remember them yourself later on.
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Use the right data structures

Don’t use functional (i.e., immutable) arrays! This is a performance killer. There are
at least two suitable representations for level data: a finite map from locations to tiles
(Data.Map) or mutable arrays (Data.Array.ST or Data.Array.IO). The latter are poten-
tially more efficient, but also have the disadvantage of at least forcing monadic structure
of even IO onto large parts of your program.

Intersperse development with refactoring phases

Whenever you’ve successfully implemented a feature, sit back for a moment and think
about how to clean up and restructure your code – before you start on the next feature.
Trying to restructure or clean up everything at the end may be too late.

Add debugging features

Add a lot of debugging features to your game. Different ways to display things and
the possibility of showing meta-information can help both you and me to debug your
game. Definitely make sure that the field-of-vision algorithm, the smell, and the com-
plete level plus locations of monsters can be visualized.

4.4 Asteroids (***)

In this assignment you’ll be developing a small game in Haskell. This as-
signment will be a bit more “realistic” than the previous assignments: the
program you’ll write has to respond in real-time to user input, will consist
of multiple modules, and you have more freedom in how and what to im-
plement.

4.4.1 Introduction

In this assignment you’ll make use of the Gloss graphics library for Haskell, which
provides a very high-level interface for drawing graphics on screen and handling user
input.

The game you’ll be implementing is a variant of the classic 1979 arcade game Asteroids.
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Getting started

Either download and extract the starting framework from the course website or clone
the assignments repository from Github.

The starting framework contains two folders:

framework This folder contains the modules which you need to modify in order to
implement the minimal requirements, as well as the cabal file necessary to build
the game.

executables This folder contains executables for Windows, OS X and Linux of a version
of the game that already implements all of the minimal requirements.

The Gloss library

The home page of Gloss can be found at http://gloss.ouroborus.net/. It contains
some instructions on how to install the Gloss library and solve common problems. On
the machines we tested the library with (including those at the university’s computer
lab) we only needed to run the command:

cabal install gloss

More interesting is the library’s documentation, which can be browsed at https://
hackage.haskell.org/package/gloss-1.8.1.2. In particular you’ll likely be inter-
ested in the modules:

Graphics.Gloss (functions that create the main window and handle events);

Graphics.Gloss.Data.Picture (combinators for drawing pictures);

Graphics.Gloss.Data.Color (helper functions for working with colors);

Graphics.Gloss.Geometry.Angle (helper functions for converting between degrees and
radians).

Finally, you may want to have a look at https://hackage.haskell.org/package/

gloss-examples, a package which contains numerous example program written using
the Gloss library.

Compiling and running the starting framework

The compile the starting framework, go into the framework folder (not the src folder!)
and type:

cabal install
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To run the program, type:5

lambda-wars

At this point the program will crash, because not all the required functions have been
implemented yet.

4.4.2 Overview

The game is a variant of the game Asteroids. The player controls a space ship that can
move through a region of space, shoot at enemies to gain points, and pickup bonus
objects that increase the score multiplier. This is all accompanied by some exciting
visual effects.

Modules

The starting framework follows the model–view–controller pattern. The game is di-
vided into the following modules:

Model This modules contains the data type definitions that are used to represent the
game state.

View This module uses the game state to render a picture.

Controller.Event This modules handles keyboard events (by queuing them in the game
state). You will not have to change much, if anything, in this module.

Controller.Time This modules specifies what needs to be done on each frame update.
It handles the queued input events and updates all state that needs to evolve with
time.

4.4.3 Requirements

The requirements are separated into minimal requirements, those that you have to im-
plement in order to receive a passing grade—assuming your coding style is not too
awkward, and optional requirements that you can implement in order to receive a higher
grade. Grades do not scale linearly with the amount of features implemented: in order
to improve your grade further, you will have to do increasingly more work.

Also look at the supplied executables of the game. They may make the requirements
clearer than the textual requirements given here.

5Or “lambda-wars width height ” to run the game in full screen mode.
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Minimal requirements

Player movement The player’s space ship should be able to rotate to the left and right,
and be able to thrust forward.

Enemy spawning and movement Enemies should spawn randomly in space and move
towards the player’s ship. If an enemy touches the player’s ship, the ship should
blow up and the score multiplier be reset to one.

Shooting The player should be able to shoot. If a bullet hits an enemy or bonus object
that enemy or object should be destroyed.

Score keeping The score multiplier should increase by one for each bonus object the
player picks up, and the score itself should be increased by the score multiplier
for each enemy the player shoots.

Particle effects If the player’s ship is destroyed it should explode using a nice visual
effect. If the player thrusts, an exhaust trail should be left behind.

Background A star field should be drawn in the background. Stars should have depth,
which is made visible by parallax scrolling.

Optional requirements

Here are some suggestions for additional features that you can add to the game. You
can also come up with your own ideas.

More enemy types Add multiple types of enemies with various kinds of appearance
and behavior. Spawn them in an interesting pattern.

High scores Add a high score table to the game that is saved and read from disk. This
obviously also requires limiting the number of lives a player has.

Multi-player Add a multi-player mode to the game. You will probably want to have a
look at the Network, Network.Socket or one of the other networking libraries on
Hackage.

Menu Add a menu to the game that allows you to view the high scores and/or select
the number of players, difficulty setting or level. It is probably easiest to model
this as some kind of finite automaton, so you can keep a nice separation between
model, view and controller.
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4.4.4 Hints

Record syntax

The game state is represented as a record. To keep your code elegant you should know
how to work with records effectively. Haskell has some convenient syntax for working
with records, especially if you have enabled the NamedFieldPuns and RecordWildCards

language extensions (as has been done in the starting framework).

Pattern matching on a record To pattern match on a record and bring two of its field
into scope, write:

foo (World {field1, field2}) == bar field1 field2

To pattern match on a record and bring all of its field into scope, write:

foo (World { . .}) == bar field1 field2

To pattern match on a record and also give the whole record a name at the same time,
write:

foo world@(World {field1, field2}) == bar’ world

“Updating” a record To update some fields in a record, write:

foo world@(World {field1, field2, field3})
== world {field1 == 42, field2 == bar field1}

Note that the argument passed to bar is the original value of field1 in the record world,
and not the value 42 in the newly constructed world object!

Accessing a field that is not in scope If you need to access a field that is not in scope,
write:

foo world@(World {field1}) == bar field1 (field2 world)

147

http://www.haskell.org/ghc/docs/7.8.3/html/users_guide/syntax-extns.html#record-puns
http://www.haskell.org/ghc/docs/7.8.3/html/users_guide/syntax-extns.html#record-wildcards


4 Larger tasks: game programming

Advanced approaches

Instead of using records to keep track of your game state, there are also some other
approaches that may work. These are more advanced techniques and not necessary to
be able to get the game working. We mention them here, but we’ll leave it up to you to
figure out how these approaches work for yourself.

Monads Instead of passing the game state explicitly, you can hide it inside an appropri-
ate (state) monad and abstract the state updates with a suitable monadic interface.
This has the advantage that some parts of the state (such as the random number
generator’s seed) can be updated automatically by the monad, while you only
have to worry about the important parts. The potential disadvantage is that this
will give your program a much more imperative feel.

Lenses Record syntax works reasonably fine when you have flat records. Once you
start working with nested records, it can quickly become a pain, though. One of
the solutions proposed for this problem are lenses. There are several implementa-
tions of lenses: https://hackage.haskell.org/package/lens is one of the more
popular ones, but has a very steep learning curve; https://hackage.haskell.
org/package/data-lens and https://hackage.haskell.org/package/fclabels6

are less powerful, but easier to use.

Some tutorials on working with lenses can be found at:

• http://www.haskellforall.com/2012/01/haskell-for-mainstream-programmers_

28.html

• https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/

a-little-lens-starter-tutorial

• http://fvisser.nl/post/2013/okt/1/fclabels-2.0.html

But again, this is all advanced stuff and not necessary for you to know or use in order
to be able to finish the assignment.

Cabal

If you want to add extra modules to the framework, you will also have to list them in
the cabal script (framework/lambda-wars.cabal). For more information on cabal, see
http://www.haskell.org/cabal/users-guide/developing-packages.html.

6Written by former students from Utrecht University, who now work at a start-up that develops web
applications using Haskell.

148

https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/data-lens
https://hackage.haskell.org/package/data-lens
https://hackage.haskell.org/package/fclabels
http://www.haskellforall.com/2012/01/haskell-for-mainstream-programmers_28.html
http://www.haskellforall.com/2012/01/haskell-for-mainstream-programmers_28.html
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
http://fvisser.nl/post/2013/okt/1/fclabels-2.0.html
http://www.haskell.org/cabal/users-guide/developing-packages.html


5 Larger tasks: web programming

5.1 Blog server, Snap based (∗∗)

The goal of this assignment is to extend an existing web server for blogs in order to ob-
tain experience with a ’real world’ application. The web server is constructed on top of
the Snap framework but also uses many other packages and GHC specific extensions.
Building a larger application usually involves the use of many of such (different) lan-
guage ingredients, understanding these to a reasonable degree and letting these work
together usually is the challenge of such larger applications where coding is not done
from scratch but done by composition of existing libraries.

The web server named blog-server can be found at:

https://github.com/atzedijkstra/blog-server

The README associated with the projects contains references to the various used pack-
ages.

5.1.1 Getting started

Download the web server code, build the web server using cabal, preferably using a
sandbox (http://coldwa.st/e/blog/2013-08-20-Cabal-sandbox.html) as many spe-
cific libraries are used with whom existing versions may clash.

> git clone https://github . com / atzedijkstra / blog− server

> cd blog− server

> cabal sandbox init

> cabal install -- force-reinstalls

The --force-reinstalls may be necessary when newer versions of libraries are in-
stalled in the sandbox on which other libraries may depend. After locally installed,
unpack the example state, run the server and startup a browser at http://localhost:
8000.

> tar xfz state . tgz

> .cabal− sandbox / bin / blog− server− p 8000

See the README for what the provided state offers. Using the provided state is not nec-
essary, then the server starts building state from scratch.
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5.1.2 User info (authentication, html rendering)

The server currently does not show when a user was logged in for the last time.

Exercise 5.1.1. Explore the User datatype which holds a AuthUser from the snap frame-
work authorisation infrastructure to find out where info about ’last time logged in’ is
maintained. The relevant fields may or may not be filled correctly, adapt the server to
show this info in the editing of the user settings (menu My stuff) and on every page
where a user is logged in.

Exercise 5.1.2. Explore the User datatype which holds a AuthUser from the snap frame-
work authorisation infrastructure to find out where info about ’last time logged in’ is
maintained or might be added.

5.1.3 Full state rendering (programmatic html rendering)

Via menu Dump adm a text based dump of the internal state can be generated, but much
of the tabular nature of this info is not shown.

Exercise 5.1.3. For html rendering the blaze library is used. The current rendering of
(e.g. Users) state is done by embedding the pretty printing of such state in a html pre
tag. Adapt this by programmatically rendering all info inside tables.

5.1.4 Domain model changes (data storage, persistency)

The persistency library acid-state uses the library safecopy for storing data. The
safecopy library provides mechanisms for allowing a domain model (read: datatypes)
to change whilst old state still can be used and be adapted on-the-fly. In order to make
this work, safecopy knows about domain model versions and requires explicit func-
tions to be implemented for transforming datat between versions.

Exercise 5.1.4. Blog entries are shown in “last created shown first” order, based on the
increasing sequence number assigned as an identification to each blog entry. Adapt the
Blog datatype to include a modification date, and adapt the rendering of blogs to show
blog entries in “last modified shown first”. Explore the safecopy library on how to deal
with mentioned domain model changes.

Exercise 5.1.5 (optional, difficult). Modify the rendering of logs to be able to choose
between different orderings, e.g. ascending/descending, and/or ordering based on
modification time/creation time/user name/etc.. Make this choice part of a (persistent)
user preference. In order to make this work the whole application and its user interface
generation needs to be explored and modified.
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5.1.5 Automatic checkpoints (concurrency)

The acid-state library is based on a combination of

• (checkpoint) storing a full in-memory state onto disk (i.e. various files), and

• (event) logging modifications to this full state.

In case of failure the last full state is read and the events (function calls) from the log
are re-run. This is mechanism many transaction based systems use, but this mechanism
requires a balance between the time consuming store of full state (which may be very
large) and the re-run of the log.

Exercise 5.1.6 (difficult). Although creating checkpoints (function createCheckpoint)
can be done manually (menu Sync adm), this can better be done automatically, for ex-
ample during server idle time. Explore the snap framework for its use of threads (see
GHC.Conc) and programmatic ways of finding out whether server threads are idle. You
may have to use https://wiki.haskell.org/ThreadScope. If possible, add a thread
which its sole purpose is to monitor the idle state of the server, and if idle enough per-
forms a checkpoint (but not too often either, and perhaps not if not much has to be
stored).

5.1.6 Database access (sql wrapping)

The persistent storage is not done via relational databases, too keep the server rela-
tively simple. The snap framework offers various plugins for accessing databases, e.g.
snaplet-hdbc, or snaplet-mysql-simple.

Exercise 5.1.7 (optional, difficult). Replace the persistency layer based on acid-state

by one based on a database layer of your choice.

5.1.7 Blog upload (parsing)

Usually some external representation of otherwise internal data can be uploaded to a
website. Such a representation can be CSV (Comma Separated Values) or a variant
thereof; or it might be another format of your choice.

Exercise 5.1.8. Design and/or choose an external representation for multiple blogs.
Write a parser for it, and use this parser to add upload functionality for blog entries.

5.1.8 More functionality

Exercise 5.1.9 (optional). Extend the server to you liking, e.g. by adding blog categories,
tags, etc.. Beef up the rendering by properly using style sheets (if you happen to be an
expert in that, or want to be...).
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5 Larger tasks: web programming

5.2 Debt tracking server, Yesod based (***)

In this assignment you will develop a small web application for keeping
track of who owes you money and who you owe money to, called IOU
(pronounced “I owe you”).

You should read this text completely and carefully before beginning to im-
plement the application.

5.2.1 Introduction

In this assignment you’ll make use of the Yesod web framework for Haskell, which will
handle a lot of the details of writing a web application for you.

Getting started with Yesod

An online version of the book Developing Web Applications with Haskell and Yesod can be
found at http://www.yesodweb.com/book. You will need to at least skim the chapters
in the “Basics” part of the book and have enough familiarity with Yesod so that you
understand how the blog in the “Examples” part works. This application has a fairly
similar architecture to the one you will be developing. You don’t need to know any of
this for the exam, though.

In order to complete this assignment you will only need a minimal amount of knowl-
edge about HTML (if you know what <a>, <p>, <h1>, <ul> and <li> mean, then you
should be fine, otherwise it will likely become clear by reading the book, as well) and
probably no knowledge of CSS and JavaScript at all.

Some basic knowledge about relational databases is helpful. While you don’t need to
write any queries in SQL, you do need to know what a relational database schema looks
like and what a join is. If you didn’t take the course on Databases, then you might want
to team up with someone who did, or do some extra background reading.

Installing Yesod

To install the Yesod web framework on your machine, issue the following Cabal com-
mands from the command line:

cabal update

cabal install alex

cabal install yesod-platform

cabal install yesod-bin
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5.2 Debt tracking server, Yesod based (***)

Running the starting framework

After you have extracted the starting framework, you can open a command line, go to
that folder, and start the framework by running the commands:

cabal install

yesod devel

The final command will start the “development server” that will monitor any of the
files in the starting framework and automatically recompile them for you when they are
modified. You can visit the web application by opening the URL http://localhost:

3000/ in a web browser.

5.2.2 Overview

The motivation for developing this application is as follows: when eating with a group
in a restaurant or ordering some pizzas online, it’s often more convenient if one person
pays the bill and the other people promise to repay that person at a later time (either by
giving him or her some cash, or by paying for the pizza bill the next week).

When eating with a large group, or when ordering pizzas online often enough, it can-
become quite a hassle to keep track of all those debts that need to be repayed, so clearly
this administration would benefit from some automation.

Entities

The following entities are of importance to the application:

Users A User is anyone who has ever logged in on the system. Users can add new
Receipts and Payments into the system and be added to Receipts as debtors.

Receipts The User paying the bill to the restaurant owner or pizza delivery guy will
receive a receipt. He or she can enter this Receipt into the system, specifying the
amount they have payed and which Users will have to repay part of the bill to
them.

Payments Occasionally a debt will be settled by the exchange of money between two
Users. These transfers will also have to be administered in the system. A Pay-
ment simply denotes the exchange of a certain amount of money from one User
to another User.
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5.2.3 Requirements

The requirements are separated into minimal requirements, those that you have to im-
plement in order to receive a passing grade—assuming your coding style is not too
awkward, and optional requirements that you can implement in order to receive a higher
grade. Grades do not scale linearly with the amount of features implemented: in order
to improve your grade further, you will have to do increasingly more work.

Minimal requirements

Your application should respond to the following URLs:

/user Should list all users that have logged in to the system, linking to their /user/userId
page.

/user/userId Should for a given user display:

• The receipts entered into the system by this user.

• The receipts this user has been added to as a debtor.

• The payments this user still has to make to other users.

• The payments this user still has to receive from other users.

The information on the payments the users still has to make and receive should
take all Receipts and Payments entered into the system into account.

If the page belongs to the currently logged in user, then the user should be pre-
sented with the option of entering new payments into the system.

/receipt Should list all receipts that have been entered into the system, linking to their
/receipt/receiptId page.

/receipt/receiptId Should display information about the given receipt (the user
who entered it into the system, the amount, and the users who should pay a part
of the amount to the one that entered the receipt into the system).

/payment Should display all payments that have been entered into the system.

Furthermore, you may assume that:

1. Only one User every pays a bill and that this is always the User that enters the
Receipt into the system.

2. The costs of a bill are always split evenly between all debtors.
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Optional requirements

Here are some suggested features you can try to implement:

Additional entities The minimal requirements make some assumptions that are not
always realistic: for example, it assumes the bill is always split equally and that
only one person paid for the bill. Lift these restrictions. This will probably require
you to modify several of the entities and/or add new ones.

Update and delete The minimal requirements only state you should be able to Create
and Retrieve entities. Modify you application so that it can also Update (edit,
modify) and Delete the various entities.

Validation Make sure all user input gets properly validated. For example, users proba-
bly shouldn’t be able to enter receipts or payments for negative amounts into the
system. (See: “Forms: Validation”.)

Navigation bar Modify the defaultLayout function, so that a navigation bar is auto-
matically displayed on all pages, allowing easy access to the various pages in
your application. (See: “Yesod Typeclass: defaultLayout”.)

Sorting Make some of the tables you output sortable on a user selected column. (See:
“Yesod’s Monads: Example: Request Information”.)

Authorization The starting framework already handles authentication for you: a visitor
of the website can login and is then associated with a User entity in the database.
However, no authorization is happening: anyone can see any page in the system.
Add some authorization checks to the application. (See: “Authentication and
Authorization”.)

Testing Write QuickCheck tests for the pure portions of your code, or use the Yesod.Test
framework for testing the impure portions of your application. (See the /tests

folder in the starting framework.)

Machine readability Make the pages accessible in a machine readable form as well (for
example, in the JSON format) and ideally through the same URL. (See: “RESTful
Content: Representations”.)

If you want to add other features to your application this is fine to. However, we are
mainly interested in seeing how well you are at writing Haskell, so any features that
consist purely of HTML, CSS or JavaScript code will only count minimally towards
your grade.
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5 Larger tasks: web programming

5.2.4 Starting framework

Overview of files

config/models In this file you must define the entities that are stored in the database.
A beginning has been made here, but you will have to fill out the rest. Note that
if you make changes to the database schema then Yesod will try to migrate your
database to the new schema automatically. If the changes are too complex then
this will fail and you will have to delete the database (IOU.sqlite3) manually
and start with a fresh one.

config/routes In this file you define the URLs of the pages the web application re-
sponds to. Several pages needed to meet the minimal requirements are present
already, but you may need to add more.

Handler/*.hs These modules make up the core of the web application and take care
of processing user input, querying the database, and rendering the output. Most
functions have been left undefined, so here you will be doing most of your work.
If you want to add extra modules here, then don’t forget to list them in Application.hs

and IOU.cabal as well.

messages/en.msg Here you can define messages, if you want to make use of the inter-
nationalization framework (optional).

5.2.5 Hints

Write functional code

Most of the code in the Handler/*.hs files will run inside the Handler Html monad
that allows you to retrieve user input, query the database, and eventually return some
HTML.

However, a lot of the processing that needs to be done between retrieving the user input
and query the database, and between querying the database and returning the resulting
web page can be done functionally. Try to define helper functions that do not run inside
the Handler monad in order to do this processing purely functionally.

Many-to-many relations

The User and Receipt entities have a many-to-many relationship with one another: a
Receipt can list many Users as debtors, and a User can be listed as a debtor on many
Receipts.

Modeling such a relation in a relational database requires you to add an extra Re-
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ceiptUser entity matching Users to Receipts. Performing a query on such relations
requires you to perform a two or three-way join on those relations. For this purpose the
joinTable and joinTable3 are available. See getPaymentsR in Handler/Payment.hs

for an example of how to use the latter function.

Users

You can use a Google account to log in to the application (your @students.uu.nl ad-
dress should be associated with such an account). However, for testing purposes it is
convenient to have a few extra Users present in the system. So unless you have a few
spare Google accounts laying around, you might want to insert a few extra users into
the database.
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6 Introduction to Agda

To complete these exercises, you will need to install the dependently typed program-
ming language Agda. You can find the most recent installation instructions on the
Agda wiki. You may also want to consult the list of most common Agda commands
and Emacs cheatsheet.

You can download a template Agda file from the AFP website, containing type signa-
tures and holes. Your job is to complete the remaining definitions.

Exercise 6.0.1. Show that the type Vec a n is an applicative functor in a, that is, define
the following functions:

pure : {n : Nat} {a : Set} -> a -> Vec a n

_<*>_ : {a b : Set} {n : Nat} -> Vec (a -> b) n -> Vec a n -> Vec b n

vmap : {a b : Set} {n : Nat} -> (a -> b) -> Vec a n -> Vec b n

Exercise 6.0.2. Besides one dimensional vectors, we can also define a type of matrices,
that is vectors of vectors. Show how to add two matrices, multiply to matrices, create
the identity matrix, and transpose a matrix. You may find the applicative definitions
from the previous exercise useful.

Matrix : Set -> Nat -> Nat -> Set

Matrix a n m = Vec (Vec a n) m

madd : {n m : Nat} -> Matrix Nat m n -> Matrix Nat m n -> Matrix Nat m n

mmul : {n m k : Nat} -> Matrix Nat m n -> Matrix Nat n k -> Matrix Nat m k

idMatrix : {n : Nat} -> Matrix Nat n n

transpose : {n m : Nat} {a : Set} -> Matrix a m n -> Matrix a n m

Exercise 6.0.3. The data type Fin n can be used to represent a type with precisely n

inhabitants.

data Fin : Nat -> Set where
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Zero : forall {n} -> Fin (Succ n)

Succ : forall {n} -> Fin n -> Fin (Succ n)

Show how to create a vector of length n, enumerating all the inhabitants of Fin n:

plan : {n : Nat} -> Vec (Fin n) n

Next, define a simple forgetful map from Fin n to Nat:

forget : {n : Nat} -> Fin n -> Nat

There are several ways to embed

There are several ways to embed Fin n in Fin (Succ n). Try to come up with one that
satisfies the correctness property below (and prove that it does).

embed : {n : Nat} -> Fin n -> Fin (Succ n)

correct : {n : Nat} -> (i : Fin n) -> forget i == forget (embed i)

Exercise 6.0.4. The next exercise is to define several functions for comparing natural
numbers. Given the following data type:

data Compare : Nat -> Nat -> Set where

LessThan : forall {n} k -> Compare n (n + Succ k)

Equal : forall {n} -> Compare n n

GreaterThan : forall {n} k -> Compare (n + Succ k) n

Show that there is a ‘covering function’ – that is, that for any pair of numbers, you can
always decide which one is biggest:

cmp : (n m : Nat) -> Compare n m

Finally, use this comparison function to define the absolute difference between two
numbers:

difference : (n m : Nat) -> Nat

Exercise 6.0.5. Prove the following lemmas formulated below. You may want to define
auxiliary lemmas or use the notation intoduced in the lectures.
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plusZero : (n : Nat) -> (n + 0) == n

plusSucc : (n m : Nat) -> Succ (n + m) == (n + Succ m)

plusCommutes : (n m : Nat) -> (n + m) == (m + n)

distributivity : (n m k : Nat) -> (n * (m + k)) == ((n * m) + (n * k))

Exercise 6.0.6. Consider the following relation between two lists, describing when one
list is a sublist of another:

data SubList {a : Set} : List a -> List a -> Set where

Base : SubList Nil Nil

Keep : forall {x xs ys} -> SubList xs ys -> SubList (Cons x xs) (Cons x ys)

Drop : forall {y zs ys} -> SubList zs ys -> SubList zs (Cons y ys)

Show that this relation is an equivalence relation, i.e., prove the following three prop-
erties:

SubListRefl : {a : Set} {xs : List a} -> SubList xs xs

SubListTrans : {a : Set} {xs ys zs : List a} ->

SubList xs ys -> SubList ys zs -> SubList xs zs

SubListAntiSym : {a : Set} {xs ys : List a} ->

SubList xs ys -> SubList ys xs -> xs == ys

Exercise 6.0.7. Define a relation between two natural numbers, stating that one is less-
than-or-equal to the other:

data LEQ : Nat -> Nat -> Set where

...

Prove that your relation is also an equivalence relation:

leqRefl : (n : Nat) -> LEQ n n

leqTrans : {n m k : Nat} -> LEQ n m -> LEQ m k -> LEQ n k

leqAntiSym : {n m : Nat} -> LEQ n m -> LEQ m n -> n == m

Now given the following check that one number is less than the other:
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_<=_ : Nat -> Nat -> Bool

Zero <= y = True

Succ x <= Zero = False

Succ x <= Succ y = x <= y

Show that your data type is inhabited precisely when this function returns true.

leq<= : {n m : Nat} -> LEQ n m -> (n <= m) == True

<=leq : (n m : Nat) -> (n <= m) == True -> LEQ n m

Exercise 6.0.8. We can define logical negation as follows:

Not : Set -> Set

Not P = P -> Empty

Agda’s logic is constructive, meaning some properties you may be familiar with from
classical logic do not hold. Prove the following property:

notNotP : {P : Set} -> P -> Not (Not P)

The converse implication does not hold: Not (Not P) does not imply P.

Similarly, P or Not P doesn’t hold for all statements P, but we can prove the statement
below. It’s an amusing brainteaser.

data Or (a b : Set) : Set where

Inl : a -> Or a b

Inr : b -> Or a b

orCase : {a b c : Set} -> (a -> c) -> (b -> c) -> Or a b -> c

orCase f g (Inl x) = f x

orCase f g (Inr x) = g x

notNotExcludedMiddle : {P : Set} -> Not (Not (Or P (Not P)))

notNotExcludedMiddle = {!!}

There are various different axioms that can be added to a constructive logic to get the
more familiar classical logic.

doubleNegation = {P : Set} -> Not (Not P) -> P

excludedMiddle = {P : Set} -> Or P (Not P)

impliesToOr = {P Q : Set} -> (P -> Q) -> Or (Not P) Q
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Prove these three statements are equivalent. You may find it helpful to replace the
definitions such as doubleNegation their definition in the type signatures below.

step1 : doubleNegation -> excludedMiddle

step2 : excludedMiddle -> impliesToOr

step3 : impliesToOr -> doubleNegation

A harder challenge is to show that these are also equivalent to Pierce’s law:

piercesLaw = {P Q : Set} -> ((P -> Q) -> P) -> P

Exercise 6.0.9. In this final exercise you will verify a tiny compiler.

The following data types for expressions constitutes our source language:

data Expr : Set where

Val : Nat -> Expr

Add : Expr -> Expr -> Expr

Next, define an evaluation function, that computes the natural number to which an
argument expression will evaluate.

eval : Expr -> Nat

Our target language will consist of the following instructions:

• PUSH n will push the natural number n on our stack;

• ADD will take two numbers from the stack and add them.

Define a data type representing this target language.

Show how to execute these instructions:

exec : Instructions -> List Nat -> List Nat

You cannot give a total definition with the desired semantics. You can fix this by re-
turning a value of type Maybe (List Nat) instead; a more elegant fix, however, is to
add more (dependent) types describing the size of the stack.

Finally define a compiler:
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compile : Expr -> Instructions

And prove that for every expression, evaluation produces the same result as executing
the corresponding compiled code.
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